Доктор экономических наук, кандидат технических наук, профессор Луценко Евгений Вениаминович,

Кубанский государственный аграрный университет имени И.Т.Трубилина

 

АВТОМАТИЗИРОВАННЫЙ СИСТЕМНО-КОГНИТИВНЫЙ АНАЛИЗ

 

1. Кратко об АСК-анализе

Системный анализ представляет собой современный метод научного познания, общепризнанный метод решения проблем [5, 6]. Однако возможности практического применения системного анализа ограничиваются отсутствием программного инструментария, обеспечивающего его автоматизацию. Существуют разнородные программные системы, автоматизирующие отельные этапы или функции системного анализа в различных конкретных предметных областях.

Автоматизированный системно-когнитивный анализ (АСК-анализ) представляет собой системный анализ, структурированный по базовым когнитивным операциям (БКО), благодаря чему удалось разработать для него математическую модель, методику численных расчетов (структуры данных и алгоритмы их обработки), а также реализующую их программную систему – систему «Эйдос» [1-3, 7]. Система «Эйдос» разработана в постановке, не зависящей от предметной области, и имеет ряд программных интерфейсов с внешними данными различных типов [3]. АСК-анализ  может быть применен как инструмент, многократно усиливающий возможности естественного интеллекта во всех областях, где используется естественный интеллект. АСК-анализ был успешно применен для решения задач идентификации, прогнозирования, принятия решений и исследования моделируемого объекта путем исследования его модели во многих предметных областях, в частности в экономике, технике, социологии, педагогике, психологии, медицине, экологии, ампелографии, геофизике, энтомологии, криминалистике и др. [8, 9].

 

2. Истоки АСК-анализа

Известно, что системный анализ является одним из общепризнанных в науке методов решения проблем и многими учеными рассматривается вообще как метод научного познания. Однако, как впервые заметил еще в 1984 году проф. И.П. Стабин,  на практике применение системного анализа наталкивается на проблему [10]. Суть этой проблемы в том, что обычно системный анализ успешно применяется в сравнительно простых случаях, в которых в принципе можно обойтись и без него, тогда как в действительно сложных ситуациях, когда он действительно чрезвычайно востребован и у него нет альтернатив, сделать это удается гораздо реже. Проф. И.П. Стабин предложил и путь решения этой проблемы, который он видел в автоматизации системного анализа [10].

Однако путь от идеи до создания программной системы долог и сложен, т.к. включает ряд этапов:

– выбор теоретического математического метода;

– разработка методики численных расчетов, включающей структуры данных в оперативной памяти и внешних баз данных (даталогическую и инфологическую модели) и алгоритмы обработки этих данных;

– разработка программной системы, реализующей эти математические методы и методики численных расчетов.

 

3. Методика АСК-анализа

3.3.1. Предпосылки решения проблемы

Перегудов Ф.И. и Тарасенко Ф.П. в своих основополагающих работах 1989 и 1997 годов [5, 6] подробно рассмотрели математические методы, которые в принципе могли бы быть применены для автоматизации отдельных этапов системного анализа. Однако даже самые лучшие математические методы не могут быть применены на практике без реализующих их программных систем, а путь от математического метода к программной системе долог и сложен. Для этого необходимо разработать численные методы или методики численных расчетов (алгоритмы и структуры данных), реализующие математический метод, а затем разработать программную реализацию системы, основанной на этом численном методе.

В числе первых попыток реальной автоматизации системного анализа следует отметить докторскую диссертацию проф. Симанкова В.С. (2001) [11]. Эта попытка была основана на высокой детализации этапов системного анализа и подборе уже существующих программных систем, автоматизирующих эти этапы. Идея была в том, что чем выше детализация системного анализа, чем мельче этапы, тем проще их автоматизировать. Эта попытка была реализована, однако, лишь для специального случая исследования в области возобновляемой энергетики, т.к. системы оказались различных разработчиков, созданные с помощью различного инструментария и не имеющие программных интерфейсов друг с другом, т.е. не образующие единой автоматизированной системы. Эта попытка, безусловно, явилась большим шагом по пути, предложенному проф. И.П. Стабиным, но и ее нельзя признать обеспечившей достижение поставленной цели, сформулированной Стабиным И.П. (т.е. создание автоматизированного системного анализа), т.к. она не привела к созданию единой универсальной программной системы, автоматизирующий системный анализ, которую можно было бы применять в различных предметных областях.

Необходимо отметить работы Дж. Клира по системологии и автоматизации решения системных задач, которые внесли большой вклад в автоматизацию системного анализа путем создания и применения универсального решателя системных задач (УРСЗ), реализованного в рамках оригинальной экспертной системы [12, 13]. Однако в экспертной системе применяется продукционная модель знаний, для получения которых от эксперта необходимо участие инженера по знаниям (когнитолога). Этим обусловлены следующие недостатки экспертных систем:

– они генерируют знания каждый раз, когда они необходимы для решения задач, и это может занимать значительно большее время, чем при использовании декларативной формы представления знаний;

– продукционные модели обычно построены на бинарной логике (if then else), что вызывает возможность логического конфликта продукций в процесс логического вывода, что приводит к необратимому останову логического процесса;

– эксперты - люди чаще всего заслуженные и их время и знания стоят очень дорого; поэтому привлечение экспертов для извлечения готовых знаний на длительное время проблематично и обычно эксперт просто физически не может сообщить очень большой объем знаний, а иногда и не хочет этого делать и сообщает неадекватные знания;

– чаще всего эксперты формулируют свои знания неформализуемым путем на основе своей интуиции, опыта и профессиональной компетенции, т.е. не могут сформулировать свои знания в количественной форме, а пользуются для их формализации порядковыми или даже номинальными шкалами, поэтому экспертные знания являются не очень точными и для их формализации необходим инженер по знаниям (когнитолог).

 

3.3.2. АСК-анализ как решение проблемы

Автоматизированный системно-когнитивный анализ разработан профессором Е.В. Луценко и предложен в 2002 году [1], хотя разработан он был значительно раньше, причем с программным инструментарием: системой «Эйдос» [1, 3, 7]. Основная идея, позволившая сделать это, состоит в рассмотрении системного анализа как метода познания (отсюда и «когнитивный» от «cognitio» – знание, познание, лат.). Эта идея позволила структурировать системный анализ не по этапам, как пытались сделать ранее, а по базовым когнитивным операциям системного анализа (БКОСА), т.е. таким операциям, к комбинациям которых сводятся остальные. Эти операции образуют минимальную систему, достаточную для описания системного анализа, как метода познания, т.е. конфигуратор. Понятие конфигуратора предложено В.А. Лефевром [14]. В 2002 году Е.В. Луценко был предложен когнитивный конфигуратор [1], включающий 10 базовых когнитивных операций.

Когнитивный конфигуратор:

1) присвоение имен;

2) восприятие (описание конкретных объектов в форме онтологий, т.е. их признаками и принадлежностью к обобщающим категориям - классам);

3) обобщение (синтез, индукция);

4) абстрагирование;

5) оценка адекватности модели;

6) сравнение, идентификация и прогнозирование;

7) дедукция и абдукция;

8) классификация и генерация конструктов;

9) содержательное сравнение;

10) планирование и поддержка принятия управленческих решений.

Каждая из этих операций оказалась достаточно элементарна для формализации и программной реализации.

Компоненты АСК-анализа:

– формализуемая когнитивная концепция и следующий из нее когнитивный конфигуратор;

– теоретические основы, методология, технология и методика АСК-анализа;

– математическая модель АСК-анализа, основанная на системном обобщении теории информации;

– методика численных расчетов, в универсальной форме реализующая математическую модель АСК-анализа, включающая иерархическую структуру данных и 24 детальных алгоритма 10 БКОСА;

– специальное инструментальное программное обеспечение, реализующее математическую модель и численный метод АСК-анализа – Универсальная когнитивная аналитическая система "Эйдос".

Этапы АСК-анализа:

1) когнитивно-целевая структуризация предметной области;

2) формализация предметной области (конструирование классификационных и описательных шкал и градаций и подготовка обучающей выборки);

3) синтез системы моделей предметной области (в настоящее время система «Эйдос» поддерживает 3 статистические модели и 7 системно-когнитивных моделей (моделей знаний);

4) верификация (оценка достоверности) системы моделей предметной области;

5) повышение качества системы моделей;

6) решение задач идентификации, прогнозирования и поддержки принятия решений;

7) исследование моделируемого объекта путем исследования его моделей является корректным, если модель верно отражает моделируемый объект и включает: кластерно-конструктивный анализ классов и факторов; содержательное сравнение классов и факторов; изучение системы детерминации состояний моделируемого объекта; нелокальные нейроны и интерпретируемые нейронные сети прямого счета; классические когнитивные модели (когнитивные карты); интегральные когнитивные модели (интегральные когнитивные карты), прямые обратные SWOT-диаграммы; когнитивные функции и т.д.

Суть метода АСК-анализа состоит в последовательном повышении степени формализации модели и преобразовании данных в информацию, а ее в знания и решении на основе этих знаний задач идентификации (распознавания, классификации и прогнозирования), поддержки принятия решений и исследования моделируемой предметной области (рисунки 1 и 2):

Рисунок 1. Последовательность преобразования данных в информацию,
а ее в знания и решения задач в АСК-анализе

Рисунок 2. О соотношении содержания понятий:
«данные», «информация» и «знания» в АСК-анализе

 

 

Математические аспекты АСК-анализа

Математическая модель АСК-анализ основана на теории информации, точнее на системной теории информации (СТИ), предложенной Е.В. Луценко [1, 2, 3][1]. Это значит, что в АСК-анализе все факторы рассматриваются с одной единственной точки зрения: сколько информации содержится в их значениях о переходе объекта, на который они действуют, в определенное состояние, и при этом сила и направление влияния всех значений факторов на объект измеряется в одних общих для всех факторов единицах измерения: единицах количества информации [8, 9].

Это напоминает подход Дугласа Хаббарда [15], но, в отличие от него, имеет открытый универсальный программный инструментарий (систему «Эйдос»), разработанный в постановке, не зависящей от предметной области [1-3]. К тому же на систему «Эйдос» уже в 1994 году было три патента РФ [3, 16[2]], а первые акты ее внедрения датируются 1987 годом [1, 3][3], тогда как основная работа Дугласа Хаббарда [15] появилась лишь в 2009 году. Это означает, что идеи АСК-анализа не только появились, но и были доведены до программной реализации в универсальной форме и применены в различных предметных областях на 22 с лишним года раньше появления работ Дугласа Хаббарда.

Поэтому АСК-анализ обеспечивает корректную сопоставимую обработку числовых и нечисловых данных, представленных в разных типах измерительных шкал и разных единицах измерения [8, 9]. Метод АСК-анализа является устойчивым непараметрическим методом, обеспечивающим создание моделей больших размерностей при неполных и зашумленных исходных данных о сложном нелинейном динамичном объекте управления. Этот метод является чуть ли не единственным на данный момент, обеспечивающим многопараметрическую типизацию и системную идентификацию методов, инструментарий которого (интеллектуальная система «Эйдос») находится в полном открытом бесплатном доступе [3, 16][4].

Система Эйдос обеспечивает:

1. Многопараметрическую типизацию, т.е. формирование обобщенных образов классов на основе конкретных примеров объектов, которые к ним относятся.

2. Системную идентификацию, т.е. определение степени сходства образа конкретного объекта с обобщенными образами классов (сравнение конкретных объектов с обобщенными образами классов).

3. Формирование кластеров классов (сравнение обобщенных образов классов друг с другом).

4. Формирование конструктов кластеров (сравнение кластеров друг с другом и формирование конструктов).

5. Исследование моделируемой предметной области путем исследования ее модели.

 

4. Некоторые результаты применения АСК-анализа в различных предметных областях

Метод системно-когнитивного анализа и его программный инструментарий интеллектуальная система "Эйдос" были успешно применены при проведении 6 докторских и 7 кандидатских диссертационных работ в ряде различных предметных областей по экономическим, техническим, психологическим и медицинским наукам.

АСК-анализ был успешно применены при выполнении десятка грантов РФФИ и РГНФ различной направленности за длительный период - с 2002 года по настоящее время (2016 год).

По проблематике АСК-анализа издана 21 монография, получено 29 патентов на системы искусственного интеллекта, их подсистемы, режимы и приложения, опубликовано более 200 статей в изданиях, входящих в Перечень ВАК РФ (по данным РИНЦ).  В одном только Научном журнале КубГАУ (входит в Перечень ВАК РФ с 26-го марта 2010 года) автором АСК-анализа Луценко Е.В. опубликовано 186 статей общим объёмом 321,559 у.п.л., в среднем 1,729 у.п.л. на одну статью.

По этим публикациям, грантам и диссертационным работам видно, что АСК-анализ уже был успешно применен в следующих предметных областях и научных направлениях: экономика (региональная, отраслевая, предприятий, прогнозирование фондовых рынков), социология, эконометрика, биометрия, педагогика (создание педагогических измерительных инструментов и их применение), психология (личности, экстремальных ситуаций, профессиональных и учебных достижений, разработка и применение профессиограмм), сельское хозяйство (прогнозирование результатов применения агротехнологий, принятие решений по выбору рациональных агротехнологий и микрозон выращивания), экология, ампелография, геофизика (глобальное и локальное прогнозирование землетрясений, параметров магнитного поля Земли, движения полюсов Земли), климатология (прогнозирование Эль-Ниньо и Ла-Нинья), возобновляемая энергетика, мелиорация и управление мелиоративными системами, криминалистика, энтомология и ряд других областей.

АСК-анализ вызывает большой интерес во всем мире. Сайт автора АСК-анализа [16] посетило около 500 тыс. посетителей с уникальными IP-адресами со всего мира. Еще около 500 тыс. посетителей открывали статьи по АСК-анализу в Научном журнале КубГАУ.

Необходимо отметить, что в развитии различных теоретических основ и практических аспектов АСК-анализа приняли участие многие  ученые: д.э.н., к.т.н., проф. Луценко Е.В., Засл. деятель науки РФ, д.т.н., проф. Лойко В.И., к.ф.-м.н., Ph.D., проф., Трунев А.П. (Канада), д.э.н., д.т.н., к.ф.-м.н., проф. Орлов А.И., к.т.н., доц. Коржаков В.Е., д.э.н., проф. Барановская Т.П., д.э.н., к.т.н., проф. Ермоленко В.В., к.пс.н. Наприев И.Л., к.пс.н., доц. Некрасов С.Д., к.т.н., доц. Лаптев В.Н., к.пс.н, доц. Третьяк В.Г., к.пс.н., Щукин Т.Н., д.т.н., проф. Симанков В.С., д.э.н., проф. Ткачев А.Н., д.т.н., проф. Сафронова Т.И., д.э.н., доц. Горпинченко К.Н., к.э.н., доц. Макаревич О.А., к.э.н., доц. Макаревич Л.О., к.м.н. Сергеева Е.В. (Фомина Е.В.), Бандык Д.К. (Белоруссия), Чередниченко Н.А., к.ф.-м.н. Артемов А.А., д.э.н., проф. Крохмаль В.В., д.т.н., проф. Рябцев В.Г., к.т.н., доц. Марченко А.Ю., д.т.н., проф. Фролов В.Ю., д.ю.н, проф. Швец С.В., Засл. деятель науки  Кубани, д.б.н., проф. Трошин Л.П., Засл. изобр. РФ, д.т.н., проф. Серга Г.В., Сергеев А.С., д.б.н., проф. Стрельников В.В. и другие.

В заключение отметим, что программный инструментарий АСК-анализа – интеллектуальная система «Эйдос» находится в полном открытом бесплатном доступе на сайте автора (вместе с исходными текстами) по адресу: http://lc.kubagro.ru/aidos/_Aidos-X.htm.

 

Литература

1.        Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). – Краснодар: КубГАУ, 2002. – 605 с. http://elibrary.ru/item.asp?id=18632909.

2.        Орлов А.И., Луценко Е.В. Системная нечеткая интервальная математика. Монография (научное издание). – Краснодар: КубГАУ, 2014, – 600 с. ISBN 978-5-94672-757-0. http://elibrary.ru/item.asp?id=21358220.

3.        Луценко Е.В. Универсальная когнитивная аналитическая система «Эйдос". Монография (научное издание). – Краснодар: КубГАУ, 2014. – 600 с. ISBN 978-5-94672-830-0. http://elibrary.ru/item.asp?id=22401787.

4.        Луценко Е.В. Исследование влияния подсистем различных уровней иерархии на эмерджентные свойства системы в целом с применением АСК-анализа и интеллектуальной системы "Эйдос" (микроструктура системы как фактор управления ее макросвойствами) / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. – Краснодар: КубГАУ, 2012. – №01(075). С. 638 – 680. – Шифр Информрегистра: 0421200012\0025, IDA [article ID]: 0751201052. – Режим доступа: http://ej.kubagro.ru/2012/01/pdf/52.pdf, 2,688 у.п.л.

5.        Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ. - М.: Высшая школа, 1989. - 320 с.

6.        Перегудов Ф.И., Тарасенко Ф.П. Основы системного анализа. – Томск: Изд-во науч.-техн. лит., 1997. – 389 с.

7.        Луценко Е.В. Теоретические основы, технология и инструментарий автоматизированного системно-когнитивного анализа и возможности его применения для сопоставимой оценки эффективности вузов /  Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. – Краснодар: КубГАУ, 2013. – №04(088). С. 340 – 359. – IDA [article ID]: 0881304022. – Режим доступа: http://ej.kubagro.ru/2013/04/pdf/22.pdf, 1,25 у.п.л.

8.        Луценко Е.В. Синтез адаптивных интеллектуальных измерительных систем с применением АСК-анализа и системы «Эйдос» и системная идентификация в эконометрике, биометрии, экологии, педагогике, психологии и медицине / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. – Краснодар: КубГАУ, 2016. – №02(116). С. 1 – 60. – IDA [article ID]: 1161602001. – Режим доступа: http://ej.kubagro.ru/2016/02/pdf/01.pdf, 3,75 у.п.л.

9.        Луценко Е.В. Метризация измерительных шкал различных типов и совместная сопоставимая количественная обработка разнородных факторов в системно-когнитивном анализе и системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. – Краснодар: КубГАУ, 2013. – №08(092). С. 859 – 883. – IDA [article ID]: 0921308058. – Режим доступа: http://ej.kubagro.ru/2013/08/pdf/58.pdf, 1,562 у.п.л.

10.    Стабин И.П., Моисеева B.C. Автоматизированный системный анализ. - М.: Машиностроение, 1984. - 309 с.

11.    Симанков В.С. Автоматизация системных исследований в альтернативной энергетике. Диссерт. на соиск. уч. ст. докт, техн. наук. По спец.: 05.13.01. http://tekhnosfera.com/avtomatizatsiya-sistemnyh-issledovaniy-v-alternativnoy-energetike.

12.    Klir G.J. Architecture of Systems Problem Solving, with D. Elias. – New York:. Plenum Press, 1974. –354 p.

13.    Клир Дж. Системология. Автоматизация решения системных задач. - Москва: Радио и связь, 1990. - 538 с. http://www.twirpx.com/file/486296/.

14.    Лефевр В.А. Конфликтующие структуры . Издание второе, переработанное и дополненное. — М.: Изд-во «Советское радио», 1973. – 158 с. с ил.

15.    Хаббард Дуглас У. Как измерить все, что угодно. Оценка стоимости нематериального в бизнесе / Дуглас У. Хаббард / [Пер. с англ. Е. Пестеревой]. — М.: ЗАО «Олимп–Бизнес», 2009. — 320 с.: ил. ISBN 978-5-9693-0163-4 (рус.). http://www.twirpx.com/file/1546361/.

16.    Сайт автора АСК-анализа и системы «Эйдос» проф. Е.В. Луценко: http://lc.kubagro.ru/.

 



[1] Математическая модель АСК-анализа описана в ряде работ: http://elibrary.ru/author_items.asp?authorid=123162

[2] См., например: http://lc.kubagro.ru/aidos/index.htm