Резонансный сейсмогенез
и системно-когнитивное
прогнозирование сейсмичности

Монография

Краснодар
КубГАУ
2019
Рецензенты:
Ф. Г. Хисамов — ректор Кубанского института информзащиты (КИИЗ), доктор технических наук, профессор;
Б. Л. Александров — профессор кафедры физики Кубанского государственного аграрного университета, доктор геолого-минералогических наук, профессор

Луценко Е. В.


В монографии представлены теория резонансного сейсмогенеза и авторская методика автоматизированного системно-когнитивного прогнозирования землетрясений. Рассмотрены физические модели мантийной конвекции и информационные модели влияния планетарных гравитационных комплексов на формирование сейсмических событий. Приведено описание открытой масштабируемой интерактивной интеллектуальной on-line среды для обучения и научных исследований на базе АСК-анализа и системы «Эйдос».

Предназначено для сейсмологов, специалистов по искусственному интеллекту и всех интересующихся данной проблематикой.

УДК 004.8:550.34
ББК 32.97

Л86 Эйдос

© Луценко Е. В., Трунев А. П., Чередниченко Н. А., 2019
© ФГБОУ ВО «Кубанский государственный аграрный университет имени И. Т. Трубылина», 2019

DOI 10.13140/RG.2.2.18546.45760
СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ .......................................................................................................................... 7

ГЛАВА I. РЕЗОНАНСНЫЙ СЕЙСМОГЕНЕЗ И СИСТЕМНО-КОГНИТИВНОЕ ПРОГНОЗИРОВАНИЕ СЕЙСМИЧНОСТИ .......... 9

1.1. ОСНОВНЫЕ ПОЛОЖЕНИЯ СЕЙСМОГЕНЕЗА И ВОЗМОЖНОСТЬ ПРОГНОЗИРОВАНИЯ ЗЕМЛЕТРЯСЕНИЙ ........................................................................................................... 9
   1.1.1. Современные научные взгляды на сейсмогенез ........................................................................ 9
   1.1.2. Научные взгляды на возможность прогнозирования землетрясений .............................................................. 11

1.2. ОБОСНОВАНИЕ ВЫБОРА МЕТОДА И ИНСТРУМЕНТА РЕШЕНИЯ ПРОБЛЕМЫ ПРОГНОЗИРОВАНИЯ ЗЕМЛЕТРЯСЕНИЙ ............................................................................................................... 12
   1.2.1. Суть метода АСК-анализа ........................................................................................................... 12
   1.2.2. Суть математической модели АСК-анализа и частные критерии ....................................................... 16
   1.2.3. Интегральные критерии и принятие управляющих решений ....................................................... 20

1.3. ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ СЕЙСМИЧЕСКОЙ АКТИВНОСТИ ОТ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ МЕТОДОМ АСК-АНАЛИЗА ...................................................................................... 23

1.4. ВОЗМОЖНОСТЬ ГРАВИТАЦИОННОГО ВЛИЯНИЯ НЕБЕСНЫХ ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ НА СЕЙСМОГЕНЕЗ ЗЕМЛИ ................................................................................................................. 27

1.5. ВОЗДЕЙСТВИЕ ЭЛЕМЕНТОВ ПЛАНЕТАРНЫХ ОРБИТ НА ПОВЕРХНОСТЬ ЗЕМЛИ И РЕЗУЛЬТАТЫ ЭТОГО ВЛИЯНИЯ ............................................................................................................ 29

1.6. ИССЛЕДОВАНИЕ МЕТОДОМ АСК-АНАЛИЗА СОЧЕТАННОГО ВОЗДЕЙСТВИЯ МАРСА И ЭЛЕМЕНТОВ ЕГО ОРБИТ НА СЕЙСМИЧЕСКИЕ ПРОЦЕССЫ ................................................................................................................ 33

1.7. РЕЗОНАНС В СОЛНЕЧНОЙ СИСТЕМЕ. СЕЙСМИЧЕСКИЙ РЕЗОНАНС. РЕЗОНАНСНАЯ МОДЕЛЬ СЕЙСМОГЕНЕЗА ................................................................................................................................. 35

1.8. АЛГОРИТМ ФОРМИРОВАНИЯ СЕЙСМИЧЕСКОГО ОТВЕТА ПРИ КВАЗИРЕЗОНАНСНОМ ЗЕМЛЕТРЯСЕНИИ. СТАДИИ ЗЕМЛЕТРЯСЕНИЯ ....................................................................................................................... 42
   1.8.1. Скрытая стадия накопления сейсмической энергии ................................................................................. 42
   1.8.2. Стадия подготовки квазирезонансного землетрясения ........................................................................... 43
   1.8.3. Необратимый переход системы к сейсмическому квазирезонансу. Вступление системы сейсмических резонаторов в квазирезонанс ...................................................................................................... 43

1.9. АНАЛИЗ НАИБОЛЕЕ МОЩНЫХ ЗЕМЛЕТРЯСЕНИЙ В СООТВЕТСТВИИ С ПРЕДЛАГАЕМЫМ АЛГОРИТМОМ ................................................................................................................................. 44
   1.9.1. Анализ землетрясения в Чили 22.05.1960 г ......................................................................................... 44
   1.9.2. Анализ землетрясения в Сан-Франциско 18.04.1906 г ................................................................... 50
   1.9.3. Анализ землетрясения в Калифорнии 18.10.1989 г ........................................................................... 51
   1.9.4. Анализ землетрясения на Аляске 27.03.1964 г ............................................................................... 53
   1.9.5. Анализ землетрясения вблизи о. Суматра 26.12.2004 г ................................................................. 56
   1.9.6. Анализ землетрясения в Японии 11.03.2011 г ................................................................................... 58
1.9.7. Анализ землетрясения на Камчатке 04.11.1952 г. ...................... 61
1.9.8. Анализ землетрясения в Аквиле, Италия 06.04.2009 г. .................. 62

1.10. ВОЗМОЖНОСТИ ПРОГНОЗИРОВАНИЯ ЗЕМЛЕТРЯСЕНИЙ В СИСТЕМЕ «Эйдос» ........................................................................................................ 64
1.10.1. Исследование методом АСК-анализа влияния Марса и элементов его орбиты в суточном движении на разрядку сейсмических очагов................................................................. 64
1.10.2. Исследование методом АСК-анализа зависимости общей сейсмичности в мире от Луно-планетарных взаимоотношений ..... 66
1.10.3. Методика численных расчетов прогнозных форм.................. 69
   1.10.3.1. Расчет силы планет в файле «ABS_Syla_Planet» ..... 69
   1.10.3.2. Расчет в файле «Bala» ............................................... 71
   1.10.3.3. Расчет в файле: «Rasp_PROGNOZ» ............................. 72
1.10.4. Прогнозирование землетрясений в режиме 2.3.2.12 системы «Эйдос» ........................................................................................................ 72
1.10.5. Прогнозирование резонансных землетрясений в режиме 2.3.2.12 системы «Эйдос» ........................................................................................................ 75
1.10.6. Прогнозирование общей сейсмичности на длительные временные периоды ................................................................. 80

1.11. СОЗДАНИЕ И РАЗВИТИЕ МЕТОДИКИ ПРОГНОЗИРОВАНИЯ ЗЕМЛЕТРЯСЕНИЙ ........................................................................................................ 82
1.11.1. Поиски внешних причин сейсмогенеза и прогнозирование землетрясений в ручном режиме ................................................................. 82
1.11.2. Поиски закономерностей сейсмогенеза с помощью АСК-анализа и системы «Эйдос» ................................................................. 84
1.11.3. Прогнозирование землетрясений в автоматическом режиме на основе системы «Эйдос» ................................................................. 85
1.12.1. Метод оценки реализации землетрясений в режиме 2.3.2.12 системы «Эйдос» ........................................................................................................ 86
1.12.2. Графики-прогнозы общей сейсмичности в мире и регионах и реализация землетрясений ................................................................. 87
1.12.3. Динамическое наблюдение за воздействием Нептуна и Урана на сейсмические процессы ................................................................. 90
1.12.4. Реализация прогноза по региону Калифорнии в сейсмическом цикле июля 2019 г. ........................................................................................................ 95
1.12.5. Динамическое наблюдение за распределением актуальных сейсмогенных зон, обусловленных движением Луны ........................................ 97

ЛИТЕРАТУРА К ГЛАВЕ I ................................................................. 102

ГЛАВА II. СЕЙСМИЧЕСКИЕ МОДЕЛИ ........................................ 108
2.1. ВВЕДЕНИЕ .................................................................................. 108
2.2. ФИЗИЧЕСКИЕ МОДЕЛИ СЕЙСМИЧЕСКИХ СОБЫТИЙ ................. 113
   2.2.1. Конвекция в мантии ............................................................. 113
2.2.2. Модель турбулентной среды ................................................................. 117
2.2.3. Конвективные течения ........................................................................... 120
2.2.4. Течение магмы в полости (кармане) ...................................................... 127
2.2.5. Тепловая конвекция магмы под шероховатой поверхностью .. 132
2.2.6. Напряженное состояние литосферных плит ........................................ 135

2.3. ИНФОРМАЦИОННЫЕ МОДЕЛИ СЕЙСМИЧЕСКИХ СОБЫТИЙ .......... 141
2.3.1. Распознавание случайных событий в поле центральных сил... 141
2.3.2. Задача о распознавании категорий событий в поле центральных сил .......................................................................................................................... 142
2.3.3. Исходные данные и технология моделирования землетрясений ................................................................. ................................................... ................................................... 146
2.3.4. Достоверность идентификации категорий магнитуды ............. 149
2.3.5. Достоверность идентификации глубины гипоцентра .......... 150
2.3.6. Достоверность идентификации частоты событий ... 152
2.3.7. Проверка гравитационных гипотез .................................................. 154
2.3.8. Достоверность прогноза землетрясений ........................................ 160

ЛИТЕРАТУРА К ГЛАВЕ II .................................................................................. 164

ГЛАВА III. ПЕРСОНАЛЬНАЯ ОТКРЫТАЯ МАШТАБИРУЕМАЯ МУЛЬТИЯЗЫЧНАЯ ИНТЕРАКТИВНАЯ ИНТЕЛЛЕКТУАЛЬНАЯ ONLINE СРЕДА ДЛЯ ОБУЧЕНИЯ И НАУЧНЫХ ИССЛЕДОВАНИЙ НА BASE АСК-АНАЛИЗА И СИСТЕМЫ «ЭЙДОС» .............................................. 170

3.1. ВВЕДЕНИЕ .................................................................................................. 170
3.2. ОТ БОЛЬШИХ ДАННЫХ К БОЛЬШОЙ ИНФОРМАЦИИ, А ОТ НЕЕ К БОЛЬШИМ ЗНАНИЯМ................................................................. 171
3.2.1. Данные .................................................................................................. 171
3.2.2. Информация .......................................................................................... 173
3.2.3. Знания .................................................................................................. 176
3.3. КРАТКО ОБ АСК-АНАЛИЗЕ И СИСТЕМЕ «ЭЙДОС» ...................... 180
3.3.1. Что же такое АСК-анализ? ................................................................. 180
3.3.2. Работы каких ученых сыграли большую роль в создании АСК-анализа? ................................................................................................. 180
3.3.3. Кем и когда создан АСК-анализ? ...................................................... 182
3.3.4. Что включает в себя АСК-анализ? ......................................................... 183
3.3.5. Какие ученые принимали и сейчас принимают участие в развитии АСК-анализа? ................................................................. 185
3.3.6. Каков индекс цитирования ученых, принимающих участие в развитии АСК-анализа? ................................................................. 186
3.3.7. Докторские и кандидатские диссертации защищенные с применением АСК-анализа в различных областях науки............... 186
3.3.8. Сколько грантов РФФИ и РГНФ выполнено и выполняется с применением АСК-анализа? ................................................................. 187
3.3.9. Сколько монографий, патентов, публикаций, входящих в Перечень ВАК есть по АСК-анализу? .................................................. 189
3.3.10. В каких областях и где уже применялись АСК-анализ и система «Эйдос»? ........................................................................................................ 191
3.3.11. В каких областях может применяться АСК-анализ? ........ 193
3.3.12. Internet-ссылки по АСК-анализу .................................................. 193
3.3.13. О плагиаторах, использующих работы по АСК-анализу, находящиеся в Internet в открытом доступе .................................................. 194

3.4. ОПИСАНИЕ ОТКРЫТОЙ МАСШТАБИРУЕМОЙ ИНТЕРАКТИВНОЙ ИНТЕЛЛЕКТУАЛЬНОЙ ON-LINE СРЕДЫ ДЛЯ ОБУЧЕНИЯ И НАУЧНЫХ ИССЛЕДОВАНИЙ НА БАЗЕ АСК-АНАЛИЗА И СИСТЕМЫ «ЭЙДОС» .......... 195
3.4.1. Структура и функции открытой масштабируемой интерактивной интеллектуальной on-line среды «Эйдос» ................. 195
3.4.2. Сайт проф. Е. В. Луценко ............................................................... 195
3.4.2.1. Главная страница сайта .................................................................. 196
3.4.2.2. Монографии в полном открытом бесплатном доступе.... 196
3.4.2.3. Ссылки на статьи в Научном журнале КубГАУ и материалы на образовательном портале .................................................. 197
3.4.2.4. Скачивание системы «Эйдос» и обновлений с сайта автора и облачных дисков .......................................................... 197
3.4.3. Интеллектуальная система «Эйдос» (функции и структура) 201
3.4.4. Локальные встроенные учебные и научные Эйдос-приложения .................................................................................................. 218
3.4.5. Учебные и научные облачные Эйдос-приложения ............. 219
3.4.5.1. Анализ и картографическая визуализация запусков системы «Эйдос» в мире ................................................................. 220
3.4.5.2. Запись Эйдос-приложений в облачко ........................................ 227
3.4.5.3. Скачивание из облачка и установка на локальном компьютере облачных Эйдос-приложений ....................................... 230
3.4.5.4. Lab.работы 4-го типа, устанавливаемые путем скачивания исходных данных из Internet ......................................................... 232
3.4.5.5. Форум для обсуждения облачных Эйдос-приложений .... 232
3.4.5.6. Педагогические и научные новации, поддерживаемые предлагаемой облачной Эйдос-технологией .......................... 234
3.4.6. Форум по АСК-анализу и системе «Эйдос» ......................... 237
3.4.7. Поддержка мультиязычности ...................................................... 238

3.5. БИЗНЕС-ПЛАН В ФОРМАТЕ CANVAS ........................................... 239
3.6. НЕКОТОРЫЕ ВЫВОДЫ И ПЕРСПЕКТИВЫ ........................................ 240

ЛИТЕРАТУРА К ГЛАВЕ III ........................................................................ 242
ПРЕДИСЛОВИЕ

Ты никогда не решишь проблему, если будешь думать так же, как те, кто её создал.
/Альберт Эйнштейн/

Научные законы это лишь высказывания о повторениях в наблюдаемых явлениях
/Альберт Эйнштейн/

В действительности все совершенно не так, как на самом деле
/Антуан де Сент Экзюпери/

Ежегодно на всей Земле происходит около миллиона землетрясений, большинство из которых так незначительны, что остаются незамеченными, но единичные мощные землетрясения известны своими разрушительными последствиями.

Перспективы на текущее столетие не дают надежды на улучшение сейсмического климата в мире, как по количеству крупных землетрясений, так и по приросту населения Земли, проживающего в сейсмоопасных зонах, вследствие чего проблема прогнозирования землетрясений приобретает особую значимость.

По мере накопления фактов о сейсмической активности отношение к прогнозированию землетрясений прошло все стадии надежды и оптимизма в 60-е–70-е годы прошлого столетия и дальнейшего разочарования и скептицизма в 90-е годы. В настоящее время считается невозможным прогнозирование землетрясений на научной основе, так как не существует работающей модели сейсмогенеза. Эта модель должна включать в себя объяснение причин возникновения сейсмических очагов, накопления в них энергии и способа их разрядки.

В настоящей работе предлагается модель резонансного сейсмогенеза, основанного на влиянии планет Солнечной системы на сейсмические процессы. Методом АСК-анализа исследована зависимость сейсмической активности от движения небесных тел.
Разработан алгоритм формирования сейсмического ответа и стадии землетрясения, на примерах самых крупных землетрясений проанализирован механизм: накопления потенциальной энергии в кластере сейсмических резонаторов, подготовки сейсмического ответа, а также перехода системы к квазирезонансному землетрясению.

Выявлены принципы энергетической разрядки сейсмических очагов по линиям проекций планет и элементов их орбит в годовой и суточной динамике, что открывает перспективу прогнозирования не только даты, но и времени землетрясений.

Предлагается авторская методика прогнозирования общей сейсмичности в мире и отдельно взятых регионах, а также возможность автоматизированного прогноза в системе «Эйдос» (открытое программное обеспечение), автором которой является проф. Е. В. Луценко.

Разработан способ прогнозирования квазирезонансных землетрясений и мониторинга энергетического состояния кластеров сейсмических резонаторов.

Данная методика прогнозирования землетрясений доступна, не требует дорогостоящего оборудования, выполняется на персональном компьютере и открытой для использования системе «Эйдос» (http://lc.kubagro.ru/aidos/_Aidos-X.htm).

Аutorsы:

Чередниченко Наталья Алексеевна, Владивосток, nata426853@mail.ru

Трунев Александр Петрович, Ph. D., к.ф.-м.н., профессор, Директор, A&E Trounev IT Consulting, Торонто, Канада

1.1. Состояние основных положений сейсмогенеза и
возможность прогнозирования землетрясений

1.1.1. Современные научные взгляды на сейсмогенез

Землетрясения – подземные толчки и колебания земной
поверхности, вызванные естественными причинами или
искусственными процессами (взрывы, заполнение водохранилищ,
обрушение подземных полостей горных выработок). Небольшие
толчки могут происходить также при вулканических
извержениях. Очаг землетрясения – область в литосфере, где
происходит быстрое перемещение масс вдоль образующегося или
развивающегося тектонического разрыва, при этом возникают
упругие колебания и высвобождение накопленной сейсмической
энергии. Центральная точка очага землетрясения называется
гипоцентром. В случае протяженного очага под гипоцентром
понимают точку начала вспарывания разрыва.

Сейсмология объясняет сейсмогенез эндогенными
причинами, происходящими в недрах планеты. Общепринятой
является теория тектоники плит, которая является отправной
точкой для понимания происходящих внутри планеты процессов,
ведущих к сейсмической и вулканической активности.

Выделяют восемь основных, десятки средних и сотни
мелких литосферных плит. Континенты «впаяны» в монолитные
литосферные плиты, которые движутся со скоростью от 2 до 12
см. в год, что в настоящее время может быть измерено путем
точных технологий. Жесткие литосферные плиты движутся по
более вязкой подлежащей астеносфере путем горизонтальных
перемещений трех типов: дивергенции (расхождения) в осевых
зонах срединно-океанических хребтов, конвергенции
(схождения) по периферии океанов, в глубоководных желобах,
где океанские плиты погружаются под континентальные или
островодужные, а также скольжение вдоль разломов. При этом
спрединг (расширение) и рифтинг (горизонтальное растяжение) в
области дна океанов в связи с расхождением плит вдоль осей срединных хребтов и рождение новой океанской коры компенсируются ее поглощением в зонах субдукции (поддвига) и коллизии (столкновение) океанической коры в глубоководных желобах, благодаря чему объем Земли остается неизменным.

Движение литосферных плит по поверхности подлежащей астеносферы подчиняется теореме Эйлера, описывающей траектории взаимного перемещения сопряженных точек на сфере как дуги окружностей, проведенных относительно некоторых полюсов вращения; при этом последние расположены на пересечении поверхности Земли осью, проходящей через центр Земли.

Считается, что причина перемещения литосферных плит — тепловая конвекция в мантии Земли. Источником энергии для этих течений служит разность температуры, а также разность давления и плотности пород. Нагретые в глубоких зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодным и потому более тяжелым массам, уже отдавшим часть тепла земной коре. В этом процессе переноса тепла возникают конвективные потоки, которые замыкаются сами на себя и образуют устойчивые конвективные ячейки, согласующиеся по направлениям потоков с соседними ячейками. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения увлекает плиты в горизонтальном направлении с огромной силой за счет огромной вязкости мантийного вещества.

Границы плит являются хрупкими и, если накопленное напряжение превышает прочность породы, происходит выброс сейсмической энергии упругой деформации в виде землетрясений. В целом, 90% землетрясений в мире происходят вдоль границ плит, где породы, как правило, слабее и обладают большей готовностью к стрессу, чем породы в пределах плит. Оставшиеся 10% землетрясений происходят в пределах современных границ литосферных плит.

Вместе с тем в теории литосферных плит не получило объяснения периодическое изменение интенсивности тектонических движений, деформаций и сейсмичности, остается
открытым вопрос о начале движения плит в истории Земли, неизвестны причины существования именно такой конфигурации литосферных плит и устойчивой глобальной сети глубоких разломов.

1.1.2. Научные взгляды на возможность прогнозирования землетрясений

Существуют четыре точки зрения сейсмологов на возможность прогнозирования землетрясений. Согласно первой и второй, краткосрочное прогнозирование землетрясений невозможно, так как каждое отдельное землетрясение в пределах сейсмических зон является случайным событием и подвержено распределению Пуассона.

Такой подход позволяет использовать в основном сведения о кластеризации землетрясений в пространстве (первая точка зрения) и времени (вторая точка зрения), это позволяет накапливать статистические данные о происшедших землетрясениях, тектонических плитах и активных разломах, что дает возможность сделать долгосрочный прогноз землетрясений в регионах.

Третья группа сейсмологов высказывает мнение о возможности среднесрочного прогнозирования землетрясений, так как известны множественные предвестники сейсмических событий. Изучая их, а также связи между характерными признаками предшествующих и предполагаемого землетрясения, можно дать оценку вероятности и погрешности прогнозируемого неслучайного сейсмического события. Практическая польза такого прогноза несомненна, она могла бы позволить соответствующим организациям подготовиться к предстоящим событиям в сроки от нескольких месяцев до нескольких недель.

Практические трудности также очевидны: существует множество предвестников землетрясений, но ни один из них не является однозначным, а также имеется значительная вероятность как риска пропущенных землетрясений, так и риска ложных тревог.
В целом к настоящему моменту первые три подхода смыкаются между собой, позволяя улучшить качество сейсмического районирования, выработки рекомендаций по сейсмоустойчивому строительству и программ страхования рисков от ЧС, но проблемы прогнозирования землетрясений они не решают.

Решение данной проблемы возможно только в рамках четвертого подхода. Самая немногочисленная четвертая группа сейсмологов считает, что возможен научный детерминированный прогноз. Землетрясения по своей природе не являются случайными, и выявление причин и закономерностей сейсмогенеза приведет к возможности их прогнозирования.

1.2. Обоснование выбора метода и инструмента решения проблемы прогнозирования землетрясений

1.2.1. Суть метода АСК-анализа

В данной работе для решения поставленных задач применяется автоматизированный системно-когнитивный анализ (АСК-анализ), разработанный проф. Е.В. Луценко в 2002 году [30-37] для решения широкого класса задач идентификации, прогнозирования, классификации, диагностики, поддержки принятия решений и исследования моделируемой предметной области путем исследования ее модели. АСК-анализ имеет программный инструментарий – универсальную когнитивную аналитическую систему «Эйдос» (система «Эйдос»).

Существует много систем искусственного интеллекта. Универсальная когнитивная аналитическая система «Эйдос-Х+++» отличается от них следующими параметрами:
- разработана в универсальной постановке, не зависящей от предметной области. Поэтому она является универсальной и может быть применена во многих предметных областях (http://lc.kubagro.ru/aidos/index.htm);
- находится в полном открытом бесплатном доступе (http://lc.kubagro.ru/aidos/_Aidos-X.htm), причем с актуальными исходными текстами (http://lc.kubagro.ru/__AIDOS-X.txt);
- является одной из первых отечественных систем искусственного интеллекта персонального уровня, т.е. она не требует от пользователя специальной подготовки в области технологий искусственного интеллекта (есть акт внедрения системы «Эйдос» 1987 года) (http://lc.kubagro.ru/aidos/aidos02/PR-4.htm);
- обеспечивает устойчивое выявление в сопоставимой форме силы и направления причинно-следственных зависимостей в неполных зашумленных взаимозависимых (нелинейных) данных очень большой размерности числовой и не числовой природы, измеряемых в различных типах шкал (номинальных, порядковых и числовых) и в различных единицах измерения (т.е. не предъявляет жестких требований к данным, которые невозможно выполнить, а обрабатывает те данные, которые есть);
- содержит большое количество локальных (поставляемых с инсталляцией) и облачных учебных и научных приложений (в настоящее время их 31 и 154, соответственно) (http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf);
- обеспечивает мультиязычную поддержку интерфейса на 44 языках. Языковые базы входят в инсталляцию и могут пополняться в автоматическом режиме;
- поддерживает on-line среду накопления знаний и широко используется во всем мире (http://aidos.byethost5.com/map5.php);
- наиболее трудоемкие в вычислительном отношении операции синтеза моделей и распознавания реализует с помощью графического процессора (GPU), что на некоторых задачах обеспечивает ускорение решения этих задач в несколько тысяч раз, что реально обеспечивает интеллектуальную обработку больших данных, большой информации и больших знаний;
- обеспечивает преобразование исходных эмпирических данных в информацию, а ее в знания и решение с использованием этих знаний задач классификации, поддержки принятия решений и исследования предметной области путем исследования ее системно-когнитивной модели, генерируя при этом очень большое количество табличных и графических выходных форм
(развития когнитивная графика), у многих из которых нет никаких аналогов в других системах (примеры форм можно посмотреть в работе: http://lc.kubagro.ru/aidos/aidos18_LLS/aidos18_LLS.pdf);
- хорошо имитирует человеческий стиль мышления: дает результаты анализа, понятные экспертам на основе их опыта, интуиции и профессиональной компетенции.

Суть метода АСК-анализа состоит в последовательном повышении степени формализации модели и преобразовании данных в информацию, а ее в знания, решении на основе этих знаний задач идентификации (распознавания, классификации и прогнозирования), поддержки принятия решений и исследования моделируемой предметной области (рисунки 1 и 2) [30-37].

О соотношении содержания понятий: «Данные», «Информация» и «Знания»

Рисунок 1. О соотношении содержания понятий: «данные», «информация» и знания» в АСК-анализе
Последовательность обработки данных, информации и знаний в системе «Эйдос-Х++»

Рисунок 2. Последовательность преобразования данных в информацию, а ее в знания и решения задач в АСК-анализе и системе «Эйдос»
1.2.2. Суть математической модели АСК-анализа и частные критерии

Математическая модель АСК-анализа и системы «Эйдос» основана на системной нечеткой интервальной математике и обеспечивает сопоставимую обработку больших объемов фрагментированных и зашумленных взаимозависимых данных, представленных в различных типах шкал (номинальных, порядковых и числовых) и различных единицах измерения [30-31].

Суть математической модели АСК-анализа состоит в следующем.

Непосредственно на основе эмпирических данных рассчитывается матрица абсолютных частот (таблица 1).

<table>
<thead>
<tr>
<th>Значения факторов</th>
<th>Классы</th>
<th>Сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( I )</td>
<td>( j )</td>
</tr>
<tr>
<td></td>
<td>( N_{11} )</td>
<td>( N_{1j} )</td>
</tr>
<tr>
<td></td>
<td>( \ldots )</td>
<td>( \ldots )</td>
</tr>
<tr>
<td></td>
<td>( N_{i1} )</td>
<td>( N_{ij} )</td>
</tr>
<tr>
<td></td>
<td>( \ldots )</td>
<td>( \ldots )</td>
</tr>
<tr>
<td></td>
<td>( N_{M1} )</td>
<td>( N_{Mj} )</td>
</tr>
</tbody>
</table>

\[ N_{\Sigma j} = \sum_{i=1}^{M} N_{ij}, \quad N_{\Sigma} = \sum_{i=1}^{W} \sum_{j=1}^{M} N_{ij} \]

На основе рассчитывается матрицы условных и безусловных процентных распределений (таблица 2).

Отметим, что в АСК-анализе и его программном инструментарии интеллектуальной системе «Эйдос»
используется два способа расчета матриц условных и безусловных процентных распределений:

1-й способ: в качестве $N_{\Sigma j}$ используется суммарное количество признаков по классу;
2-й способ: в качестве $N_{\Sigma j}$ используется суммарное количество объектов обучающей выборки по классу.

Таблица 2 – Матрица условных и безусловных процентных распределений

<table>
<thead>
<tr>
<th>Значения факторов</th>
<th>Классы</th>
<th>Безусловная вероятность класса</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$i$</td>
<td>$P_{i1}$</td>
<td>$P_{ij}$ = $\frac{N_{ij}}{N_{\Sigma j}}$</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$M$</td>
<td>$P_{MJ1}$</td>
<td>$P_{MJ}$</td>
</tr>
<tr>
<td>Безусловная вероятность класса</td>
<td>$P_{\Sigma j}$</td>
<td></td>
</tr>
</tbody>
</table>

Затем на основе таблицы 2 с использованием частных критериев, приведенных таблице 3, рассчитываются матрицы системно-когнитивных моделей (таблица 4).

Таблица 3 – Различные аналитические формы частных критериев знаний

<table>
<thead>
<tr>
<th>Наименование модели знаний и частный критерий</th>
<th>Выражение для частного критерия через относительные частоты</th>
<th>Выражение для частного критерия через абсолютные частоты</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS, матрица абсолютных частот</td>
<td>---</td>
<td>$N_{ij}$</td>
</tr>
<tr>
<td>PRC1, матрица условных и безусловных процентных распределений, в качестве $N_{\Sigma j}$ используется суммарное количество признаков по классу</td>
<td>---</td>
<td>$P_{ij} = \frac{N_{ij}}{N_{\Sigma j}}$</td>
</tr>
<tr>
<td>PRC2, матрица условных и безусловных процентных распределений, в качестве</td>
<td>---</td>
<td>$P_{ij} = \frac{N_{ij}}{N_{\Sigma j}}$</td>
</tr>
</tbody>
</table>
\( N_{ij} \) используется суммарное количество объектов обучающей выборки по классу

| INF1, частный критерий: количество знаний по А.Харкевичу, 1-й вариант расчета вероятностей: \( N_j \) – суммарное количество признаков по \( j \)-му классу. Вероятность того, что если у объекта \( j \)-го класса обнаружен признак, то это \( i \)-й признак |
| \( I_{ij} = \Psi \times \log_2 \frac{p_{ij}}{p_i} \) | \( I_0 = \Psi \times \log_2 \frac{N_{ij}N}{N_iN_j} \) |

| INF2, частный критерий: количество знаний по А.Харкевичу, 2-й вариант расчета вероятностей: \( N_j \) – суммарное количество объектов по \( j \)-му классу. Вероятность того, что если предъявлен объект \( j \)-го класса, то у него будет обнаружен \( i \)-й признак |
| \( I_{ij} = \Psi \times \log_2 \frac{p_{ij}}{p_i} \) | \( I_0 = \Psi \times \log_2 \frac{N_{ij}N}{N_iN_j} \) |

| INF3, частный критерий: Хи-квадрат: разности между фактическими и теоретически ожидаемыми абсолютными частотами |
| \( I_{ij} = N_{ij} - \frac{N_iN_j}{N} \) |

| INF4, частный критерий: ROI - Return On Investment, 1-й вариант расчета вероятностей: \( N_j \) – суммарное количество признаков по \( j \)-му классу |
| \( I_{ij} = \frac{p_{ij}}{p_i} - 1 = \frac{p_{ij} - p_i}{p_i} \) | \( I_0 = \frac{N_{ij}N}{N_iN_j} - 1 \) |

| INF5, частный критерий: ROI - Return On Investment, 2-й вариант расчета вероятностей: \( N_j \) – суммарное количество объектов по \( j \)-му классу |
| \( I_{ij} = \frac{p_{ij}}{p_i} - 1 = \frac{p_{ij} - p_i}{p_i} \) | \( I_0 = \frac{N_{ij}N}{N_iN_j} - 1 \) |

| INF6, частный критерий: разность условной и безусловной вероятностей, 1-й вариант расчета вероятностей: \( N_j \) – суммарное количество признаков по \( j \)-му классу |
| \( I_{ij} = p_{ij} - p_i \) | \( I_0 = \frac{N_{ij}}{N_j} - \frac{N_i}{N} \) |

| INF7, частный критерий: разность условной и безусловной вероятностей, 2-й вариант расчета вероятностей: \( N_j \) – суммарное количество объектов по \( j \)-му классу |
| \( I_{ij} = p_{ij} - p_i \) | \( I_0 = \frac{N_{ij}}{N_j} - \frac{N_i}{N} \) |

Обозначения к таблице 3:
- \( i \) – значение прошлого параметра;
- \( j \) - значение будущего параметра;
- \( N_{ij} \) – количество встреч \( j \)-го значения будущего параметра при \( i \)-м значении прошлого параметра;
- \( M \) – суммарное число значений всех прошлых параметров;
- \( W \) - суммарное число значений всех будущих параметров.
- \( N_i \) – количество встреч \( i \)-м значения прошлого параметра по всей выборке;
\[ N_j \] – количество встреч \( j\)-го значения будущего параметра по всей выборке;

\[ N \] – количество встреч \( j\)-го значения будущего параметра при \( i\)-м значении прошлого параметра по всей выборке.

\( I_{ij} \) – частный критерий знаний: количество знаний в факте наблюдения \( i\)-го значения прошлого параметра о том, что объект перейдет в состояние, соответствующее \( j\)-му значению будущего параметра;

\( \Psi \) – нормировочный коэффициент (Е.В.Луценко, 2002), преобразующий количество информации в формуле А.Харкевича в биты и обеспечивающий для нее соблюдение принципа соответствия с формулой Р.Хартли;

\( P_i \) – безусловная относительная частота встречи \( i\)-го значения прошлого параметра в обучающей выборке;

\( P_{ij} \) – условная относительная частота встречи \( i\)-го значения прошлого параметра при \( j\)-м значении будущего параметра.

Таблица 4 – Матрица системно-когнитивной модели

![Таблица 4](image)

На основе системно-когнитивных моделей, представленных в таблице 4 (отличаются частыми критериями), решаются задачи идентификации (классификации, распознавания, диагностики, прогнозирования), поддержки принятия решений (обратная задача прогнозирования), а также задача исследования моделируемой предметной области путем исследования ее системно-когнитивной модели.
Для решения этих задач в АСК-анализе и системе «Эйдос» в настоящее время используется два интегральных критерия.

1.2.3. Интегральные критерии и принятие управляющих решений

Задача принятия управляющих решений представляет собой обратную задачу прогнозирования. Если при прогнозировании на основе значений факторов, воздействующих на объект управления, определяется в какое состояние он под их воздействием перейдет, но при принятии решений наоборот, по желательному (целевому) состоянию объекта управления определяется система значений факторов, обуславливающих переход объекта в это целевое состояние.

Не все модели обеспечивают решение обратной задачи прогнозирования. Для этого они должны обеспечивать многопараметрическую типизацию, т.е. создавать обобщенные образы в будущих состояниях объекта управления. Как влияет на поведение объекта управления одно значение фактора, отражено в системно-когнитивных моделях. Какое влияние имеет система факторов, определяется с помощью интегральных критериев. В настоящее время в системе «Эйдос» используется два аддитивных интегральных критерия:

– сумма знаний;
– резонанс знаний.

1-й интегральный критерий «Сумма знаний» представляет собой суммарное количество знаний, содержащееся в системе значений факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, при переходе объекта в будущие целевые или нежелательные состояния.

Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний:

\[ I_j = (\bar{t}_{ij}, \bar{L}_i). \]

В выражении круглыми скобками обозначено скалярное произведение. В координатной форме это выражение имеет вид:
\[ I_j = \sum_{i=1}^{M} I_{ij} L_i, \]

где: \( M \) – количество градаций описательных шкал (признаков);
\( \bar{I}_{ij} = \{I_{ij}\} \) – вектор состояния j-го класса;
\( \bar{L}_i = \{L_i\} \) – вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив-локатор), т.е.:
\[
\bar{L}_i = \begin{cases} 
 1, & \text{если } i \text{-й фактор действует;} \\
 0, & \text{если } i \text{-й фактор не действует.}
\end{cases}
\]

В текущей версии системы «Эйдос-Х++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признак нет, или \( n \), если он присутствует у объекта с интенсивностью \( n \), т.е. представлен \( n \) раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» – один раз).

2-й интегральный критерий «Семантический резонанс знаний» представляет собой нормированное суммарное количество знаний, содержащееся в системе факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, при переходе объекта в будущие целевые или нежелательные состояния.

Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний и имеет вид:
\[
I_j = \frac{1}{\sigma_j \sigma_l M} \sum_{i=1}^{M} (I_{ij} - \bar{I}_j) (L_i - \bar{L}),
\]

где:
\( M \) – количество градаций описательных шкал (признаков);
\( \bar{I}_j \) – средняя информативность по вектору класса;
\( \bar{L} \) – среднее по вектору объекта;
\( \sigma_j \) – среднеквадратичное отклонение частных критериев знаний вектора класса;

\( \sigma_1 \) – среднеквадратичное отклонение по вектору распознаваемого объекта.

\[
\bar{I}_{ij} = \{I_{ij}\} \quad \text{– вектор состояния } j-\text{го класса;}
\]

\[
\bar{L}_i = \{L_i\} \quad \text{– вектор состояния распознаваемого объекта,}
\]

включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив–локатор), т.е.:

\[
\bar{L}_i = \begin{cases} 
1, & \text{если } i-\text{й фактор действует;}

n, & \text{где } n > 0, \text{если } i-\text{й фактор действует с истинностью } n;

0, & \text{если } i-\text{й фактор не действует.}
\end{cases}
\]

В текущей версии системы «Эйдос-\( \mathrm{X}++ \)» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или \( n \), если он присутствует у объекта с интенсивностью \( n \), т.е. представлен \( n \) раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» – один раз).

Свое наименование интегральный критерий сходства «Семантический резонанс знаний» получил потому, что по своей математической форме является корреляцией двух векторов: состояния \( j-\text{го класса и состояния распознаваемого объекта.} \)

Система «Эйдос» обеспечивает построение информационно-измерительных систем в различных предметных областях. В системе «Эйдос» реализовано большое количество программных интерфейсов, обеспечивающий автоматизированный ввод в систему данных различных типов: текстовых, табличных и графических.

Путем многопараметрической типизации в системе создается системно-когнитивная модель, с применением которой, если модель окажется достаточно достоверной, могут решаться задачи системной идентификации, прогнозирования, классификации, поддержки принятия решений и исследования моделируемого объекта путем исследования его системно-когнитивной модели [30-31].
Всем этим и обусловлен выбор АСК-анализа и его программного инструментария интеллектуальной системы «Эйдос» в качестве инструментария решения поставленной проблемы в данной работе.

1.3. Исследование зависимости сейсмической активности от движения небесных тел методом АСК-анализа

В решении поставленной задачи: выявления зависимости сейсмических процессов на Земле – от влияния небесных тел, первым этапом является когнитивная структуризация предметной области и подготовка Excel-файла исходных данных. Статистическая база землетрясений была сформирована на основе оперативного сейсмологического каталога USGS [1], содержащего данные о 79321 землетрясении с магнитудой 5.0 и более, которые произошли в мире в период с 01.01.1961 – по 31.12.2018 гг. Эти данные можно использовать для формирования различных информационно-семантических моделей, если в соответствие им поставить астропараметры небесных тел, предположительно имеющих влияние на исследуемые сейсмособытия.

На основе этой базы землетрясений сформирована сводная таблица, имеющая 21184 строки, которая содержит ежедневные данные о суммарной магнитуде землетрясений в мире, этот файл имеет название «Input1».

Астропараметр – это астрономический признак планеты, а также элементов ее орбиты, данные берутся из ежедневных эфемерид на 00:00:00 GMT. Здесь и далее используется геоцентрическая, эклиптическая система координат, сидерический зодиак, айанамша Лахири, соответствующие астропараметры были рассчитаны в программе ZET-9-GEO.

Для этого исследования использованы показатели эклиптической долготы Солнца, Луны и 7 планет от Меркурия – до Нептуна, показатели склонения для всех этих небесных тел, а также эклиптические долготы лунных узлов и лунного апогея, всего 21 астропараметр, таким образом сформирован файл
На этапе формализации предметной области или автоматизированного ввода в систему «Эйдос-X++» исходных данных из Excel-файла «Inp_data» – необходимо выбрать количество градаций для классификационного и описательных шкал, которое подбирается опытным путем. В данной модели используются 2 градации классификационной шкалы в качестве адаптивных интервалов и 72 градации для описательных шкал. Использование адаптивных интервалов, с разными интервалами и равным числом наблюдений, позволяет распределить весь спектр исследуемых землетрясений на класс с относительно слабой суточной сейсмичностью, когда в мире в течение суток произошло от одного до четырех землетрясений с магнитудой 5.0 и более, и класс с сильной сейсмичностью, когда в течение суток были зарегистрированы более четырех землетрясений.

В автоматизированном режиме 2.3.2.2 формируется обучающая выборка, которая представляет собой нормализованную с помощью классификационных и
описательных шкал и градаций базу исходных данных, что делает их готовыми для обработки в программной системе.

На этапе расчетов в программе «Эйдос-Х++» производится синтез и верификация 3-х статистических и 7 системно-когнитивных моделей.

Рисунок 3. Выводная форма по достоверности статистических и системно-когнитивных моделей при различных интегральных критериях

Видно, что достоверность СК-модели INF3 с интегральным критерием «Сумма знаний» довольно высока, показатели являются статистически значимыми: метрика F=0.609, L1=0.666, а L2=0.567 (при максимуме 1).

Количественная мера достоверности моделей, F-мера Ван Ризбергена, позволяющая дать оценку достоверности модели одновременно по точности и полноте, основана на подсчете суммарного количества верно и ошибочно классифицированных и не классифицированных объектов обучающей выборки. Она предполагает, что один объект исследуемой выборки относится к одному классу.

Точность системы в пределах класса – это доля объектов, действительно принадлежащих данному классу относительно всех объектов, которые система отнесла к этому классу, полнота системы – это доля найденных классификатором объектов, принадлежащих классу относительно всех объектов этого класса в тестовой выборке, при этом рассчитывается:

· TP – истинно-положительное решение;
· TN – истинно-отрицательное решение;
· FP – ложно-положительное решение;
· FN – ложно-отрицательное решение.

Однако классическая F-мера не учитывает того, что объект может фактически одновременно относиться ко многим классам (мультиклассовая) и того, что в результате классификации может быть получена различная степень сходства-различия объекта с классами, которая по модулю может меняться от 0 до 1, а по знаку быть не только положительной, но и отрицательной (нечеткость решений классификатора).

Соответственно, при синтезе модели в системе «Эйдос» используется формирование обобщенных образов многих классов, к которым относится или не относится объект, при этом используются L1-мера достоверности моделей, которая учитывает не просто сам факт истинно или ложно-положительного или отрицательного решения, но и степень уверенности классификатора в этих решениях, а также L2-мера, где вместо сумм уровней сходства используются средние уровни сходства по различным вариантам классификации.

В системе Эйдос 10 моделей различаются частными критериями знаний, в соответствии с двумя интегральными критериями: суммой знаний и резонансом знаний. После расчетов в режиме 3.5 результаты визуализируются в виде экранной выводной формы и графиков.

Из рисунка 4 видно, что истинно-отрицательных решений при всех уровнях различия всегда значительно больше, чем ложно-отрицательных; ложно-положительные решения встречаются, но их количество резко снижается при увеличении уровня сходства; так, при уровне сходства от 0% до 5% – количество ложно-положительных решений больше, чем истинно-положительных, при уровне сходства от 5% до 10% количество истинно-положительных решений больше, чем ложно-положительных, а при уровне сходства выше 10% – ложно-положительных решений нет, т.е. все положительные решения являются истинными.
Рисунок 4. Частотные распределения модулей уровня сходства объектов с классами при TP, TN, FP и FN решениях модели INF3, созданной на базе обучающей выборки из 21184 объектов, при интегральном критерии «сумма знаний»

Это вполне достоверные результаты, свидетельствующие о существовании зависимости сейсмических процессов на планете – от динамически изменяющихся долгот и склонений Солнца, Луны, 7 планет от Меркурия – до Нептуна, а также долгот апогея Луны и лунных узлов. Полученные результаты расчетов в Модели №1 позволяют решать задачи дальнейшего исследования предметной области путем исследования ее моделей, а также открывают возможности для прогнозирования землетрясений.

1.4. Возможность гравитационного влияния небесных тел Солнечной системы на сейсмогенез Земли

Согласно научным воззрениям, существующим в астрофизике, планеты не могут влиять на сейсмическую активность Земли. Эта позиция имеет следующее обоснование: суммарный поток энергии поля, как известного, так и еще не известного, должен быть постоянным и распределяться по поверхности фронта, при этом поверхность фронта увеличивается, в случае сферической формы источника поля, как квадрат расстояния от точечного источника поля. Отсюда,
плотность потока энергии поля, вместе с интенсивностью поля, подчиняется закону обратных квадратов.

Эта теоретическая модель гравитационного воздействия тел является справедливой, но не учитывает реального гравитационного взаимодействия Солнца и планет в Солнечной системе.

Согласно общепринятой Небулярно-дисковой Солнечной модели, Солнечная система сформировалась из газопылевого облака с образованием звезды в его центре. Считается также общепринятым, что в коллапсирующем газовом облаке изначально существовал определенный угловой момент, вследствие чего образовался протопланетный диск. В процессе гравитационного сжатия и роста скорости вращения диска силами гравитации были сформированы протопланеты. Последующая эволюция Солнечной системы под воздействием сил гравитации завершилась формированием известных нам небесных тел, имеющих определенные орбиты движения в плоскости эклиптики. Предполагается, что именно гравитационные возмущения между объектами Солнечной Системы и близкими звездами привели не только к изменению орбит объектов Солнечной Системы, но и отклонили оси вращения планет от изначального перпендикулярного направления к плоскости эклиптики.

В современной планетарной космогонии имеются вопросы, которые еще ждут своего решения. Один из таких вопросов – парадокс вращательного момента. Протопланетные диски имеют небольшую массу в сравнении с массой центральной звезды. Так, например, в Солнечной системе 99,8 % массы заключено в Солнце, тем не менее, основной вращательный момент приходится именно на планеты, поэтому вопрос о перераспределении вращательного момента из центральной части конденсирующегося газопылевого облака к периферии – до сих пор не решен.

Не вызывает сомнений, что движение планет по орбитам обусловлено силами гравитации, каждая такая реальная орбита может быть рассчитана набором из шести независимых параметров, которые описаны в законах Кеплера. Каждая реальная орбита может быть представлена как
последовательность мгновенных орбит, где в каждый момент времени положение и скорость тела математически описывается эволюцией значений орбитальных элементов. При этом для небесного тела каждое значение его мгновенной орбиты является не просто механическим набором орбитальных элементов, а точками гравитационного взаимодействия небесного тела – с другими телами Солнечной системы.

Отсюда, последовательные точки мгновенных орбит планеты имеют математическое выражение приложения сил гравитации посредством таких известных элементов орбиты, как узлы планеты, а также афелий и перигелий, которые входят в состав большой полуоси, при этом определяющим фактором является не численные величины, а изменение потенциалов гравитационных полей планет.

1.5. Воздействие элементов планетарных орбит на поверхность Земли и результаты этого влияния

Учет динамики таких элементов орбит планет, как афелий, перигелий и узлы может вестись в геоцентрических и гелиоцентрических координатах. В данном исследовании нас интересует гравитационное взаимодействие Солнца и планет с Землей, поэтому здесь и далее в этой работе используется геоцентрическая система координат. Узлы, афелий и перигелий планет в геоцентрической системе координат намного динамичнее, чем в гелиоцентрической, так как они связаны с годовым циклом вращения Земли вокруг Солнца.

Имеются существенные различия между ними, в зависимости от того, являются ли они принадлежащими планетам внутреннего или внешнего круга по отношению к Земле, это определяет принципиальную разницу в их динамике.

Такие астропараметры, как афелий, перигелий и узлы внутренних планет, к которым относятся Меркурий и Венера, в геоцентрической системе координат совершают полное обращение по зодиакальному кругу в течение года или периода обращения Земли вокруг Солнца.
Афелий, перигелий и узлы внешних по отношению к Земле планет, от Марса до Нептуна, совершают колебательные движения разной амплитуды в течение года, при этом амплитуда их движения зависит от дистанции соответствующей планеты до Земли.

Характерно и то, что планетарные узлы, как и точки афелия-перигелия, в геоцентрической системе координат не находятся в противофазе, так как рассматриваются с Земли. Это приводит к тому, что для планет внутреннего круга – возможно любое угловое расстояние между ними, в то время как с увеличением расстояния от Земли до соответствующей внешней планеты угловые расстояния между ее узлами, а также точками перигелия и афелия становятся все более приближенными к 180 градусам.

В этом – принципиальная разница между проекциями на Землю данных элементов орбит небесных тел: планетарные узлы, афелий и перигелий внешних планет, совершающие годовые колебательные движения, постоянно проецируются на определенные регионы Земли и могут служить силовыми линиями накопления и разрядки сейсмической энергии.

Соответственно, проекции подобных силовых линий могут вызывать в течение геологических эпох формирование сейсмических очагов, их последующую кластеризацию во фрагменты разломов, соединение в крупные разломы земной поверхности и в формирование гигантских разломов, подобных разлому Сан-Андреас, а в итоге – литосферных тектонических плит. Кроме того, годовая динамика их проекций на Землю способна создавать гравитационные аномалии в соответствующих регионах.

В геоцентрической проекции восходящий узел Юпитера проецируется на Срединно-Индийский хребет, Индию и Сибирь, его годовая динамика способна вызывать движение Индостанской (Индийской) литосферной плиты, а также отрицательную гравитационную аномалию с центром в северной части Индийского океана, захватывающую также Индию и Сибирь. Нисходящий узел Юпитера, проецируясь на Северную Америку, – способен вызывать отрицательную гравитационную аномалию в этом регионе.
Рисунок 5. Проекция на Землю точек афелия-перигелия и узлов Юпитера в годовой динамике

Перигелий Юпитера проецируется на Атлантику, его годовая динамика совпадает с участками положительной гравитационной аномалии в северной части Атлантического океана и западных регионах Африки, а проекция афелия Юпитера – совпадает с участками положительной гравитационной аномалии к северо-востоку от Австралии.

Рисунок 6. Гравитационные аномалии, выявленные спутником GOCE

На рисунке 6 – результаты исследования гравитационного поля Земли и гравитационных аномалий, полученные европейским спутником GOCE в 2009-2013 гг., имеется региональное совпадение гравитационных аномалий и линий проекций узлов, афелия и перигелия Юпитера.
Проекция годовой динамики узлов, афелия и перигелия Сатурна совпадает с границами литосферных плит и океаническими хребтами и также может участвовать в формировании гравитационных аномалий Земли.

Годовые колебания узлов, перигелия и афелия Урана и Нептуна имеют самую малую амплитуду. Элементы орбиты Урана проецируются на Срединно-Атлантический хребет, на регион Северной Калифорнии, а также на Южную Америку, США, Канаду, Дальний Восток.

Среди внешних планет Марс занимает особое положение, так как он является ближайшей внешней планетой по отношению к Земле. Элементы орбиты Марса смещаются от условного центра их проекции на Землю на максимальное расстояние по сравнению с остальными планетами внешнего круга.

Проекции условных элементов орбиты Марса на Землю способны нести гравитационное воздействие, а их годовая динамика – вызывать вполне ощутимые результаты в виде сейсмической активности; гравитационное взаимодействие Марс-Земля является основным фактором, вызывающим формирование Тихоокеанского огненного кольца и Срединно-Атлантического хребта.

Рисунок 7. Динамика максимальных точек проекции восходящего узла Марса (1. **AN**$_{\text{Mars}}$), его нисходящего узла (2. **DN**$_{\text{Mars}}$), афелия (3. **AF**$_{\text{Mars}}$) и перигелия Марса (4. **PER**$_{\text{Mars}}$).

1.6. Исследование методом АСК-анализа сочетанного воздействия Марса и элементов его орбиты на сейсмические процессы

Для этого исследования в Модели №2 на основе базы землетрясений в мире сформирована сводная таблица, имеющая 22169 строк, которая содержит ежедневные данные о суммарной магнитуде землетрясений, с магнитудой 5.0 и более, которые произошли в период с 01.01.1900 по 18.03.2019 гг, или файл «Input1».

Для создания файла «Input2» учитываются астропараметры эклиптической долготы Марса, а также его восходящего и нисходящего узлов, афелия и перигелия. Так как в плане влияния на сейсмические процессы исследуется возможное усиление сейсмичности при соединении Марса с одним из элементов его орбиты, вычисляется разность долгот Марса и элементов его орбиты.

В файле «Input2» возможны отрицательные величины при движении Марса по зодиакальному кругу – к элементу его орбиты, а при удалении Марса от элемента его орбиты – положительные величины, при соединении Марса с элементом орбиты – данные приближаются к нулевым, при этом 36 и 37 градации описательных шкал – являются интересующими нас.
соединениями Марса с элементами его орбиты или эпизодами, когда Марс в афелии или в перигелии, в соединении со своим восходящим или нисходящим узлами.


Рисунок 8. Выводная форма по достоверности моделей при различных интегральных критериях.

При исследовании данной обучающей выборки в режиме 3.5 наиболее достоверной является модель Abs, ей придается статус текущей.
Рисунок 9. Исследование зависимости суммарной сейсмической активности в мире с 1900 по 2019 гг. – от взаимного положения Марса и четырех элементов его орбиты: восходящего узла (AN - Ascending Node), нисходящего узла (DN – Descending Node), афелия (AF) и перигеля (PER), по 72 градации признаков для каждой из четырех исследуемых описательных шкал.

При соединениях Марса со своим восходящим узлом отмечаются самые высокие показатели суммарной сейсмической активности в мире в исследуемом периоде. Соединение Марса со своим восходящим узлом дает максимальные показатели сейсмической активности, но не указывает регион землетрясений. Вследствие того, что оба элемента динамичны, соединения проецируются на разные регионы планеты (в пределах смещения восходящего узла Марса).

1.7. Резонанс в Солнечной системе. Сейсмический резонанс. Резонансная модель сейсмогенеза

В Солнечной системе резонанс можно рассматривать в нескольких вариантах, и на самом высоком уровне структурной иерархии Солнечной системы существуют резонансы и хаос.
Орбитальный планетарный резонанс возникает, когда периоды обращения двух (или более) небесных тел соотносятся как небольшие натуральные числа, в результате чего эти тела периодически сближаются, находясь в определенных точках своих орбит. Примером планетарного резонанса являются орбиты Сатурна и Юпитера, которые соотносятся примерно как 2:5, Сатурна и Урана – примерно 3:1, Урана и Нептуна – примерно 2:1, а резонанс орбит Нептуна и планетоида Плутона составляет 3:2. Считается, что регулярные возмущения силы гравитационного взаимодействия на протяжении периодов обращения планет стабилизируют их орбиты.

Помимо планетарных резонансов в Солнечной системе, обусловленных гравитационным взаимодействием небесных тел, можно рассмотреть существование резонансов в сейсмогенезе. Общепринято, что существуют собственные колебания в литосфере, которые являются неотъемлемой частью функционирования геосистем разного уровня иерархичности. Мы можем предположить существование определенного спектра частот собственных колебаний для участков литосферы разного уровня, от основных литосферных плит – до малых, и кластеров сейсмических очагов различного уровня сложности вплоть до отдельных очагов в литосфере, способных к отклику на внешние резонансные частоты.

Под резонансом понимают увеличение амплитуды колебаний резонатора под внешним воздействием, при совпадении собственной частоты резонатора и резонансной частоты внешней силы. В сейсмике под резонатором можно принять область в литосфере, где хотя бы раз произошло землетрясение. Потенциально сейсмическими резонаторами могут быть еще не выявленные очаги, не вошедшие в статистические базы землетрясений.

У волновых колебаний есть две характеристики: частота колебаний и их амплитуда. В звуковых волнах частота определяет частотную характеристику в герцах, а амплитуда – громкость звука в децибелах. Чем больше амплитуда колебаний, тем громче звук, тем дальше он слышен и тем большей разрушительной силой обладает. Применительно к планетам, за частоту колебаний отвечает период обращения планеты вокруг...
Солнца, а за амплитуду – ее расстояние от Солнца. Таким образом, в Солнечной системе у Меркурия отмечается самая высокая частота периодов обращений (колебаний), но самая малая амплитуда (громкость), а у Нептуна – самая низкая частота обращений, самая высокая амплитуда и потенциальная способность к разрушениям.

Соответственно, в данном спектре волнового воздействия на сейсмичность Земли Нептуну принадлежит основная гармоника, а все более быстро двигающиеся объекты, которые обращаются по своим орбитам между Солнцем и Нептуном, вносят в спектр волнового воздействия дополнительные гармоники.

Гравитационное взаимодействие планет и регулярные возмущения силы передаются в годовом движении планет посредством их проекций на определенные регионы, а также через проекции линий планетарных узлов, афелия и перигелия, при этом сближение этих линий в геоцентрических координатах для двух и более планет – ведет к тому, что их возмущающие гравитационные воздействия усиливаются.

Чтобы подобные процессы происходили, такие планеты должны быть медленно движущимися для того, чтобы иметь долговременный контакт с определенными зонами, длительная проекция на определенные регионы земной поверхности может вызывать накопление энергии в этих зонах, что выводит их из состояния сейсмического равновесия и дает ответный отклик в виде землетрясений.

Чем дальше планета от Солнца и длительнее период ее обращения, тем ниже частота волны, тем глубже она на границе сред войдет в литосферу, тем сильнее волновой пакет сожмется, тем большую потенциальную сейсмическую энергию приобретет сейсмический очаг, и тем больше будет амплитуда отклика, т.е. сейсмический толчок. На границе сред воздух-грунт волновой пакет сжимается за счет того, что уменьшается скорость движения и амплитуда волны, что ведет к возрастанию потенциальной сейсмической энергии. При сейсмическом ответе реализация будет уже с большей амплитудой волны по сравнению с получаемой, это внезапное увеличение амплитуды собственных колебаний очага-резонатора с выбросом энергии порождает сейсмические волны. В соответствии с этим
положением наибольшим воздействием для накопления энергии в очагах обладает Нептун, а наименьшим – Меркурий.

Отклик в виде сейсмического ответа будет тогда, когда накопленная энергия превысит силы, удерживающие участки литосферы от разрыва или сдвига. Когда происходит воздействие высокочастотных волн, они быстрее реализуются в виде землетрясений небольшой энергии, часто и более поверхностно, в зависимости от регионального строения земных недр, с учетом того, на какой глубине рыхлые слои сменяются более упругими.

Форма регулярного проявления реакции недр на подобное внешнее воздействие для линейных систем, когда в этом процессе взаимодействия происходит ответ в виде выброса энергии как внезапного увеличения амплитуды собственных колебаний сейсмического очага-резонатора при внешнем воздействии на него планетарных частотных характеристик, определяет существование сейсмического равновесия. При этом движение быстрых планет, динамика их проекций на поверхность Земли, а также проекций элементов планетарных орбит, – вызывают разрядку сейсмических очагов-резонаторов по всей Земле.

Это утверждение справедливо как для динамики проекции планет и линий элементов их орбит в годовом движении по эклиптике, связанном с вращением Земли вокруг Солнца, так и для подобной динамики в суточном движении, связанном с вращением Земли вокруг своей оси, об этом подробнее будет написано ниже.

На рисунке 10 – пример сейсмического равновесия, черная линия – прогноз общей сейсмичности в двух сейсмических циклах, белая линия – фактическая реализация или реальная общая сейсмичность за этот же период.

Чтобы каждый отдельно взятый сейсмический очаг-резонатор или система подобных резонаторов пребывали в сейсмическом равновесии, необходимо, чтобы получаемая энергия и излучаемая в виде землетрясения (рассеиваемая энергия) за один период колебаний – были сопоставимы.
Мы можем наблюдать сейсмическое равновесие в виде фоновой сейсмичности, серий землетрясений небольшой магнитуды, когда система в целом излучает примерно столько же энергии, сколько получает, при этом движения быстрых планет, действующих в пределах поверхности Мохоровичича и тем самым формирующих ее, вызывают разрядку сейсмических очагов-резонаторов по всей планете.

Если это равновесие нарушается, изменяется добротность линейного резонатора (отдельного сейсмического очага) или системы сейсмических резонаторов в виде кластеров сейсмических очагов. Если излучаемая энергия меньше, чем получаемая, добротность возрастает. Чем выше добротность каждого отдельно взятого резонатора и всей системы в целом, и чем больше периодов колебаний со сниженным ответом недр в виде реализации землетрясений пройдет, тем выше вероятность накопления сейсмической энергии разных частот, получаемой от разных планет. Линейный очаг-резонатор не способен накопить такое количество энергии, которое может реализоваться в виде мощного землетрясения, для этого нужна обширная система очагов-резонаторов в виде разлома.
Предельная добротность всей системы определяется количеством очагов-резонаторов, входящих в нее, качественными характеристиками грунтов, из которых слагается эта система резонаторов, а также характеристиками и длительностью планетарного волнового воздействия. Предельную добротность система резонаторов может накопить при длительном воздействии на нее широкого спектра планетарных волновых частот, и чем ниже получаемые частоты (от Нептуна и Урана), тем массивнее будет сейсмический ответ.

Вследствие этого, планетарное воздействие, позволяющее раскачать все резонаторы системы, приведет к квазирезонансу, при котором происходит выделение огромного количества сейсмической энергии за короткий промежуток времени.

меньше прогнозной, добротность системы резонаторов возрастает. В марте 2011 года – произошел квазирезонанс, известный как разрушительное землетрясение Тохоку, выплеск огромного количества сейсмической энергии, после чего от одного сейсмического цикла к последующему – количество выбрасываемой сейсмической энергии уменьшалось до тех пор, пока система резонаторов не пришла к неустойчивому сейсмическому равновесию к началу 2012 г.

Добротность каждого отдельно взятого сейсмического очага-резонатора ограничена, но наличие кластеров подобных очагов, а также длительность входящего воздействия разных частот позволяет раскачать все резонаторы, и добротность системы сейсмических резонаторов в целом будет определяться как качественным спектром оказываемого воздействия, так и количеством периодов во входящем сигнале.

Чем обширнее кластер сейсмических резонаторов, тем большее время требуется для накопления энергии, тем разнообразнее будет спектр накопленных частот и выше вероятность низкочастотного воздействия, определяющего массивный сейсмический ответ, квазирезонанс. Медленные планеты, от Юпитера – до Нептуна, наполняют сейсмические очаги энергией низкочастотных колебаний, быстрые планеты выступают в роли катализаторов резонансного сейсмического ответа. Когда достигнута предельная добротность системы сейсмических резонаторов, непосредственного воздействия низкочастотных колебаний не требуется, квазирезонанс может вызвать относительно небольшое высокочастотное влияние.

Высокочастотные воздействия способны раскачать сейсмические резонаторы, по большей мере имеющие небольшую глубину очагов, низкочастотные – имеющие большие глубины залегания, но когда на достигшую предельно возможной добротности систему налагается еще и высокочастотное воздействие, чаще всего Луны или Марса, возникает квазирезонанс. Он проявляется не только в виде разрушительного землетрясения большой энергетической силы на небольшой глубине, но и эмерджентными качествами отклика системы: за короткий период времени высвобождается огромное количество сейсмической энергии, несопоставимое с оказываемым на
систему воздействием. После этого наступает период затухания, когда уровень прогноза общей сейсмичности и уровень входящей в систему энергии меньше, чем энергетический ответ в виде афтершоков, пока система не отдаст избыточную энергию и не вступит снова в период неустойчивого сейсмического равновесия.

Высокочастотные планетарные воздействия, оказываемые быстро движущимися небесными телами, куда в геоцентрической системе координат включаются Солнце, Луна, а также планеты от Меркурия – до Марса, разряжая отдельные сейсмические резонаторы, преимущественно на небольших глубинах, формируют плоскость Мохоровичича, в пределах которой происходит подавляющее число землетрясений.

1.8. Алгоритм формирования сейсмического ответа при квазирезонансном землетрясении.
Стадии землетрясения

Каждое значительное сейсмособытие должно обладать характерным рядом признаков, свидетельствующих о гравитационном взаимодействии планет, и чем крупнее землетрясение, тем точнее будут эти признаки. При этом вышеописанным закономерностям подчиняются не только моменты крупных толчков, но и предшествующие им форшоки, а также афтершоки после основного землетрясения.

Квазирезонансные землетрясения формируются согласно следующему алгоритму:

1.8.1. Скрытая стадия накопления сейсмической энергии

Она определяется наличием планетарных проекций на регион сейсмического события. В годовой динамике выявляется скрытый период накопления потенциальной сейсмической энергии в кластере сейсмических резонаторов. Этот период характеризуется все большим расхождением прогнозной линии и линии реальной отдачи сейсмической энергии в очаге. В регионе
будущего землетрясения может отмечаться возрастающее напряжение в земных недрах.

1.8.2. Стадия подготовки квазирезонансного землетрясения

На этой стадии землетрясение становится неизбежным вследствие того, что накопленная энергия начинает превышать пределы прочности недр сейсмического очага. Этот период также проявляется вследствие характерного воздействия одной планеты или сочетаний планет, при этом важными являются планетарные взаимоотношения. Так, если планеты в определенных жестких взаимоотношениях, а именно в соединениях или выравниваются по отношению к Земле, или расстояние между ними по эклиптике составляет 90 градусов (квадрат), это может влиять на соответствующие регионы с готовыми к разрядке сейсмическими очагами, вызывая резонансные землетрясения. Длительность соответствующих взаимоотношений зависит от планетарных периодов обращения.

1.8.3. Необратимый переход системы к сейсмическому квазирезонансу.
Вступление системы сейсмических резонаторов в квазирезонанс

В регионе готовящегося землетрясения появляются предвестники землетрясения, выявляемые инструментальными методами. По своей сути, предвестники землетрясения, такие как увеличение потока углекислого газа, увеличение потока радона, ионосферные аномалии, аномалии поверхностной температуры, являются показателями того, что кластер сейсмических очагов-резонаторов начинает проявлять эмерджентные свойства вследствие продолжающегося внешнего воздействия на достигшую предельных показателей добротности систему резонаторов.

На этой стадии могут отмечаться форшоки. Катализатором процесса сейсмического квазирезонанса чаще всего являются Луна или быстрые планеты, их воздействие на стадии
необратимого перехода системы к сейсмическому квазирезонансу можно выявить в годовой динамике движения небесных тел по эклиптике.

В суточной же динамике в регионе с готовым к разрядке сейсмическим очагом наступает период, когда проекции планет, их узлов и апсид приближаются к региональным линиям меридиана и асцендента. Другими словами, вращение Земли вокруг своей оси вызывает поворот небесной сферы с кругом эклиптики, и для конкретного региона к моменту землетрясения это движение приводит планеты и элементы их орбит, которые являются линиями разрядки сейсмической энергии, к базовым точкам: верхней или нижней кульминации, восходу над горизонтом или заходу.

1.9. Анализ наиболее мощных землетрясений в соответствии с предлагаемым алгоритмом

1.9.1. Анализ землетрясения в Чили 22.05.1960 г.

Землетрясение в Чили 22.05.1960 г. с магнитудой 9.5 – является крупнейшим землетрясением в мире за все время инструментальной регистрации в сейсмологии.

Ему предшествовали форшоки с магнитудой от 5.8 – до 8.1, которые и до основного землетрясения представляли собой значительные сейсмические события. После основного землетрясения произошло много афтершоков с магнитудой от 5.0 до 7.0 в период до 1 ноября 1960 г. Модель сейсмического резонанса предполагает, что как форшоки, так и афтершоки реализуются не только в точке основного землетрясения, а также на участке земной поверхности, соответствующей расположению всего кластера сейсмических резонаторов.

Скрытая стадия накопления сейсмической энергии. Последнее землетрясение в данном регионе отмечалось 03.01.1951 г., с этого момента более 9 лет происходило накопление потенциальной энергии в сейсмическом очаге под влиянием медленных планет: Юпитера, Сатурна, Урана и Нептуна в их движении по эклиптике, или годовой динамике. К
моменту землетрясения Уран проецируется из знака Рак на регион Южной Америки, а непосредственно на регион землетрясения он выравнивался в 1956-1957 гг. С момента последнего землетрясения отмечалось также 6 периодов взаимодействия Нептуна и Урана, длительностью от 3 месяцев – до двух лет. Подобные планетарные взаимодействия насыщают сейсмические очаги энергией, но внешних признаков такого накопления энергии – нет или они незначительны. Происходит увеличение добротности системы резонаторов сейсмического очага, но определить это возможно лишь по расхождению между прогнозной кривой для данного региона и кривой фактической реализации землетрясений.

На этом рисунке точкой отмечены координаты землетрясения. Непосредственно на регион проецируются несколько линий гравитационного взаимодействия планет, они представлены на рисунке: Уран – выравнивается на регион...
Южной Америки из знака Рак, ближе к очагу землетрясения проецируются узлы Нептуна, точно на очаг землетрясения проецируется противолежащий ему афелий Марса, далее находится проекция нисходящего узла Сатурна, нисходящего узла Юпитера и ретроградного Сатурна.

Стадия подготовки квазирезонансного землетрясения. В этот период землетрясение становится неизбежным. Чаще всего сейсмический очаг разрежается под воздействием быстрых планет, при этом они вступают во взаимодействие с медленными планетами, или достигают такого положения в своем движении, при котором совмещаются планетарные линии энергетической разрядки для определенного региона.


Подобное совмещение линий гравитационного взаимодействия различных планет позволяет разрядиться накопленной сейсмической энергии, получить сейсмический ответ на самых разных частотах. К моменту первого форшока отмечается ретроградное движение Нептуна, Юпитера и Сатурна, Марс достигает своего перигелия и занимает соотношение 90 градусов с Юпитером.

Необратимый переход системы к сейсмическому квазирезонансу. Вступление системы сейсмических резонаторов в квазирезонанс.

На момент первого форшока 21.05.1960 в 10:02:57 GMT – Луна достигла соединения с Марсом в точке его перигелия, при этом линия афелия Марса – в точной проекции на регион, эти две планеты являются катализаторами начала разрядки достигшей
предельной добротности системы сейсмических резонаторов, они делают необратимой энергетическую разрядку всего кластера.

Вышеописанное движение планет и элементов их орбит на первых двух стадиях накопления сейсмической энергии и подготовки сейсмического ответа – происходит по эклиптике в годовой динамике, где планеты в соответствии со своими скоростями движутся против часовой стрелки, что определяется вращением Земли вокруг Солнца.

На третьей стадии, в суточном движении, в период вступления кластера сейсмических резонаторов в квазирезонанс, – небесная сфера и зодиакальный круг с планетами движутся по часовой стрелке таким образом, что на местности, где происходит описываемое сейсмособытие, из-за горизонта в точке асцендента постепенно восходят созвездия с планетами (асцендент – пересечение эклиптики с горизонтом, эта точка направлена примерно на восток), в то время как на противоположной стороне заходят за горизонт противолежащие созвездия и планеты. Этот процесс аналогичен ежедневному восходу и заходу Солнца.

В суточном движении зодиакальные созвездия и планеты постепенно приходят к возможно более высокому положению над горизонтом, это – кульминация планет, когда небесный объект проходит через меридиан наблюдателя, соответственно, возможна верхняя и нижняя кульминация, над горизонтом и ниже горизонта.

Эти четыре точки: асцендент, десцендент, верхняя и нижняя кульминация – являются базовыми точками в реализации землетрясения именно в данной местности и в определенное время суток. Не всегда задействованы все четыре точки, но хотя бы одна линия реализации сейсмического ответа присутствует. Таким образом, годовое движение медленных планет по орбите определяет процесс накопления сейсмической энергии, годовое движение быстрых планет – определяет дату сейсмособытия, а суточное движение – время землетрясения.
Таблица 6. Данные форшоков и основного землетрясения в Чили 22.05.1960 г., а также положение планет и элементов их орбит в суточном движении.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Mg</th>
<th>Asc</th>
<th>Dsc</th>
<th>Culm upp</th>
<th>Culm low</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.05.1960</td>
<td>10:02:57</td>
<td>-37.82</td>
<td>-73.35</td>
<td>25.00</td>
<td>8.1</td>
<td>Ne_R</td>
<td>DN_Ne</td>
<td>AN_Ne</td>
<td>Ur</td>
</tr>
<tr>
<td>21.05.1960</td>
<td>13:00:04</td>
<td>-37.36</td>
<td>-73.19</td>
<td>25.00</td>
<td>6.2</td>
<td>AN_Ur</td>
<td>DN_Ur</td>
<td>A_Ur</td>
<td>A_Ju</td>
</tr>
<tr>
<td>22.05.1960</td>
<td>6:01:39</td>
<td>-38.06</td>
<td>-73.96</td>
<td>15.00</td>
<td>5.8</td>
<td>A_Ur</td>
<td>DN_Mo</td>
<td>P_Ur</td>
<td>AN_Mo</td>
</tr>
<tr>
<td>22.05.1960</td>
<td>8:10:59</td>
<td>-37.98</td>
<td>-73.13</td>
<td>25.00</td>
<td>5.8</td>
<td>Ma</td>
<td>P_Ma</td>
<td>Sa_R</td>
<td>DN_Ju</td>
</tr>
<tr>
<td>22.05.1960</td>
<td>10:30:44</td>
<td>-37.78</td>
<td>-73.02</td>
<td>25.00</td>
<td>7.1</td>
<td>P_Ne</td>
<td>Ne_R</td>
<td>DN_Ne</td>
<td>Ur</td>
</tr>
<tr>
<td>22.05.1960</td>
<td>10:32:47</td>
<td>-37.86</td>
<td>-73.15</td>
<td>25.00</td>
<td>6.8</td>
<td>P_Ne</td>
<td>Ne_R</td>
<td>DN_Ne</td>
<td>Ur</td>
</tr>
<tr>
<td>22.05.1960</td>
<td>18:56:02</td>
<td>-38.06</td>
<td>-73.04</td>
<td>25.00</td>
<td>7.8</td>
<td>A_Ju</td>
<td>Ma</td>
<td>P_Ma</td>
<td>A_Mo</td>
</tr>
<tr>
<td>22.05.1960</td>
<td>19:11:20</td>
<td>-38.14</td>
<td>-73.41</td>
<td>25.00</td>
<td>9.5</td>
<td>A_Ju</td>
<td>Ma</td>
<td>P_Ma</td>
<td>A_Mo</td>
</tr>
</tbody>
</table>


Для наблюдателя на Земле – небесная сфера продолжает свое движение, в эти же сутки в момент 2 форшока в 13:00:04 – Уран продолжает разряжать энергию очага: его восходящий узел достигает асцендента, нисходящий – точно на десценденте, афелий Урана – в верхней кульминации, а в нижней кульминации – афелий Юпитера.
3 форшок происходит утром 22 мая в 6:01:39, при этом афелий и перигелий Урана, в соединении с лунными узлами, – на линии асцендент-десцендент; точно в верхней кульминации – нисходящий узел Урана, а в нижней – его восходящий узел. Базовые точки реализации сейсмического ответа на местности динамичны, движутся и планеты вследствие суточного вращения небесной сферы, но форшоки происходят только тогда, когда совмещаются линии энергетической разрядки с базовыми точками на местности.

4 форшок отмечался через два часа, в 08:10:59, при этом на асценденте – Марс в перигелии, подходят к асценденту Луна и перигелий Юпитера; точно в верхней кульминации – Сатурн и нисходящий узел Юпитера, а точно в нижней кульминации – восходящий узел Сатурна.


7 форшок – отмечался 22.05.1960 в 18:56:02, а основной толчок произошел в 19:11:20, через 15 минут, поэтому движение небесной сферы незначительное. Марс – точно в перигелии, он на десценденте, ретроградный Юпитер – в нижней кульминации на линии афелия – перигелия Сатурна, в верхней кульминации – апогей Луны в соединении с перигелием ретроградного Сатурна и восходящим узлом Юпитера.

К моменту основного толчка Марс – в перигелии, ретроградный Нептун – в афелии, Юпитер и Сатурн – также в ретроградном движении и на линии своих узлов, лунные узлы – на линии афелия-перигелия Урана.

Сейсмический квазирезонанс. Несмотря на то, что последний форшок и основное землетрясение разделяют по времени 15 минут, между ними имеется различие, вследствие чего основной толчок вошел в историю сейсмологии как самое сильное землетрясение 20 века. Различие заключается в том, что Луна прошла за 15 минут расстояние, которое позволило ей выровняться с Нептуном (в пределах 6 градусов), а также войти в жесткое соотношение 90 градусов с регионом землетрясения,
В таким образом, именно Луна явилась катализатором квазирезонансного землетрясения, самого крупного в 20 веке.

В суточной динамике вращение Земли вокруг своей оси совмещает с базовыми точками на определенной местности планеты, а также элементы их орбит, которые являются линиями гравитационного взаимодействия с потенциально готовыми к разрядке сейсмическими очагами и вызывают разрядку сейсмической энергии соответствующих частот.

1.9.2. Анализ землетрясения в Сан-Франциско 18.04.1906 г.

Землетрясение 18.04.1906 г. в Сан-Франциско является одним из самых разрушительных в истории Калифорнии.

Скрытая стадия накопления сейсмической энергии. На регион проецируются узлы Урана, как это видно на географической карте. Уран занимает эклиптическую долготу 255.936 градусов, это означает, что он — в зодиакальном знаке Стрельца и проецируется непосредственно на Северную Америку, при этом он противоположен положению на эклиптике Нептуна, то есть выравнивается с ним по отношению к Земле. Над регионом Калифорнии Уран проходил с 1899 по 1904 гг., это
был первый, скрытый этап накопления сейсмической энергии в очаге.

Стадия подготовки квазирезонансного землетрясения. Второй этап сейсмического процесса – заключался в движении Марса, а также более динамичных элементов его орбиты, которые к моменту землетрясения совместились с элементами орбиты Урана так, что нисходящий узел Марса – пришел в соединение с нисходящим узлом Урана, проецируясь на регион землетрясения, а перигелий Марса достиг линии афелия-перигелия Урана. Это – основная динамика астропараметров, определяющая дату землетрясения, так как в геоцентрической системе координат в плоскости эклиптики линии гравитационного взаимодействия Земли, Урана и Марса совместились таким образом, что их проекция на регион Калифорнии сделала возможной разрядку накопленной энергии в сейсмическом очаге.

Необратимый переход системы к сейсмическому квазирезонансу. Вступление системы сейсмических резонаторов в квазирезонанс.

Не все квазирезонансные землетрясения имеют форшоки. В суточном движении зодиакальные созвездия, планеты и элементы их орбит восходят из-за горизонта и постепенно приходят к кульминации. На момент землетрясения в Сан-Франциско кульминирует Уран, в нижней кульминации – Нептун, и разрядка сейсмической энергии в кластере сейсмических резонаторов произошла по соединенным линиям нисходящих узлов Урана и Марса, имеющих проекцию на регион.

Таким образом, годовое движение медленных планет по орбите определяет процесс накопления сейсмической энергии, годовое движение быстрых планет – определяет дату, а суточное движение – время землетрясения.

1.9.3. Анализ землетрясения в Калифорнии 18.10.1989 г.

Скрытая стадия накопления сейсмической энергии. 18.10.1989 г. – дата еще одного землетрясения в Сан-Франциско. Землетрясение в районе пика Лома Приета в 1989 году положило
конец десятилетиям спокойствия в районе залива Сан-Франциско.

На регион проецируется нисходящий узел Урана. Со времени первого землетрясения прошло 83 года, Уран – совершил оборот по орбите и вновь находится в Стрельце. С 1983 по 1988 годы он проецировался непосредственно на регион Калифорнии, когда происходил первый этап накопления сейсмической энергии. Нептун прошел половину своего орбитального движения и теперь находится в Стрельце в соединении с Сатурном, эти планеты также участвовали в процессе скрытого накопления сейсмической энергии. Юпитер занимает противоположное положение, выравниваясь с Нептуном и Сатурном.

Рисунок 14. Проекция планет и элементов их орбит на регион землетрясения (пик Лома Приета) в Калифорнии 18.10.1989 г.

Стадия подготовки квазирезонансного землетрясения. Марс движется по орбите до того момента, пока его афелий не
приходит к точному соединению с перигелием Урана на линии афелий-перигелий Урана, что определяет дату землетрясения.

Необратимый переход системы к сейсмическому квазирезонансу. Сейсмический квазирезонанс. В суточном движении проекции афеля-перигелия Урана и афеля Марса — достигают линии асцендент-десцендент, при этом точно на асценденте – афелий Урана, точно на десценденте – перигелий Урана в соединении с афелием Марса, Уран близок к верхней кульминации, а восходящий узел Марса – находится точно в нижней кульминации, что и определяет время квазирезонанского землетрясения, разрядка сейсмического очага произошла по линиям узлов Урана в их проекциях на местность.

1.9.4. Анализ землетрясения на Аляске 27.03.1964 г.

27 марта 1964 года в 05:36:16 вечера по местному времени (или 28 марта в 3:36:16 UTC) произошло сильное землетрясение магнитудой 9.2 балла в районе Аляски, в графстве Принс-Уильям.

Землетрясение длилось примерно 4.5 минуты, оно является самым мощным зарегистрированным землетрясением в истории США, а также вторым по величине землетрясением в мире, после землетрясения M 9.5 в Чили в 1960 году.

На рисунке 15 точкой отмечены координаты эпицентра Великого Аляскинского землетрясения 1964 года, которое проявило в литосфере тем, что Тихоокеанская плита сдвинулась на север под Северо-Американской платформой.

На регион проецируются Луна и Солнце, которые находятся в противофазе, то есть день землетрясения – полнолуние, этот момент становится значимым, когда Луна или Солнце имеют проекцию на регион готового к разрядке сейсмического очага. На рисунке видно, что большое количество планет и линий нисхождения энергии проецируются на регион Аляски, но наиболее точной является проекция Луны. Другими словами, полнолуние, когда Солнце и Луна усиливают свое гравитационное влияние на планету, совпало с точной проекцией Луны на регион Аляски, где к этому моменту в большом кластере сейсмических резонаторов добротность системы достигла
предельно возможных размеров, и Луна послужила катализатором квазирезонансного землетрясения.

Рисунок 15. Проекция планет и элементов их орбит на регион землетрясения на Аляске 27.03.1964 г.

Скрытая стадия накопления сейсмической энергии.


планетарных взаимоотношений и проекции планет на регион наполнили обширный кластер сейсмических резонаторов потенциальной энергией на разных частотах.

**Стадия подготовки квазирезонансного землетрясения.**


**Необратимый переход системы к сейсмическому квазирезонансу.** Вступление системы сейсмических резонаторов в квазирезонанс.


Таблица 7. Данные основного землетрясения и афтершоков в течение первых суток после квазирезонансного землетрясения на Аляске 27.03.1964 г., а также положение планет и элементов их орбит в суточном движении

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Mg</th>
<th>Asc</th>
<th>Dsc</th>
<th>Culm upp</th>
<th>Culm low</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.03.1964</td>
<td>3:36:16</td>
<td>60,91</td>
<td>147,34</td>
<td>25,00</td>
<td>9,20</td>
<td>Mo</td>
<td>Su, Ma</td>
<td>AN_Mo</td>
<td>AN_Ju</td>
</tr>
<tr>
<td>28.03.1964</td>
<td>6:08:43</td>
<td>60,11</td>
<td>148,80</td>
<td>10,00</td>
<td>5,80</td>
<td>Ju</td>
<td>A_Ma</td>
<td>AN_Ju</td>
<td>DN_Mo</td>
</tr>
<tr>
<td>28.03.1964</td>
<td>6:41:29</td>
<td>59,86</td>
<td>147,91</td>
<td>15,00</td>
<td>5,70</td>
<td>Ju</td>
<td>AN_Ne</td>
<td>DN_Ne</td>
<td>DN_Ne</td>
</tr>
<tr>
<td>28.03.1964</td>
<td>6:44:00</td>
<td>58,21</td>
<td>151,29</td>
<td>25,00</td>
<td>6,50</td>
<td>Ju</td>
<td>AN_Ne</td>
<td>DN_Ne</td>
<td>DN_Ne</td>
</tr>
<tr>
<td>28.03.1964</td>
<td>6:53:37</td>
<td>58,75</td>
<td>149,53</td>
<td>18,50</td>
<td>5,80</td>
<td>AN_Ma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.03.1964</td>
<td>7:10:24</td>
<td>58,78</td>
<td>149,39</td>
<td>20,00</td>
<td>6,40</td>
<td>AN_Ma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.03.1964</td>
<td>7:30:31</td>
<td>57,28</td>
<td>151,60</td>
<td>20,00</td>
<td>5,80</td>
<td>AN_Ma</td>
<td></td>
<td>Sa</td>
<td></td>
</tr>
<tr>
<td>28.03.1964</td>
<td>8:33:48</td>
<td>58,04</td>
<td>151,06</td>
<td>20,80</td>
<td>5,80</td>
<td>Ne_RA_Ne</td>
<td>P_Ne</td>
<td>Ur_R</td>
<td>P_Ma</td>
</tr>
<tr>
<td>28.03.1964</td>
<td>8:39:56</td>
<td>57,45</td>
<td>151,69</td>
<td>22,50</td>
<td>5,60</td>
<td>Ne_RA_Ne</td>
<td>P_Ne</td>
<td>Ur_R</td>
<td>P_Ma</td>
</tr>
<tr>
<td>28.03.1964</td>
<td>9:01:01</td>
<td>56,39</td>
<td>152,12</td>
<td>15,00</td>
<td>6,50</td>
<td>Ne_RA_Ne</td>
<td>P_Ur</td>
<td>P_Ma</td>
<td>A_Ur</td>
</tr>
<tr>
<td>28.03.1964</td>
<td>9:52:57</td>
<td>59,61</td>
<td>146,32</td>
<td>25,00</td>
<td>6,20</td>
<td>AP_Mo</td>
<td></td>
<td>Mo</td>
<td>Su_Ju</td>
</tr>
</tbody>
</table>
Так как широта данного землетрясения около 60 градусов выше экватора, движение небесной сферы, а соответственно, и точек асцендента-десцендента и точек кульминации, в течение суток неравномерное, это приводит к временной группировке афтершоков в зависимости от соединения линий энергетической разрядки с базовыми точками на местности.


Это третее по величине землетрясение в мире с М 9.1.

Землетрясение ощущалось в Банда-Ачехе, в Меулабо и в Медане, Суматре и в некоторых частях Бангладеш, Индии, Малайзии, Мальдивских Островов, Мьянмы, Сингапура, Шри-Ланки и Таиланда. Землетрясение вызвало цунами, которое было зафиксировано почти по всему миру в прибрежных зонах Индийского, Тихого и Атлантического океанов и привело к самому большому количеству жертв от этого явления в истории сейсмологии.

Разлом Суматры, основная трансформирующая структура, которая делит пополам этот остров, как известно из палеосейсмических исследований, неоднократно подвергался сильным землетрясениям, известны исторические землетрясения, которые произошли здесь в 1797 году (М 8.7-8.9), 1833 (М 8.9-9.1) и 1861 гг. (М 8.5). Тем не менее, с начала 20 века катастрофических землетрясений в этом регионе не было.

Стадия подготовки квазирезонансного землетрясения. Второй этап сейсмического процесса заключается в том, что в годовом движении Сатурн, который проецируется на регион землетрясения, становится ретроградным с 05.11.2004 г., он приближается к своему восходящему узлу, и к моменту землетрясения – это соединение становится точным, Солнце приближается к афелию Сатурна, и за сутки до землетрясения – также приходит к точному соединению. Таким образом, землетрясение стало неизбежным.

К моменту землетрясения: Сатурн в ретроградном движении и точно на линии своих узлов, в соединении с восходящим узлом,
Нептун – точно в соединении со своим нисходящим узлом и перигелием Марса, Юпитер – в афелии и в квадрате к Сатурну, Солнце – в соединении с афелием Сатурна.

Необратимый переход системы к сейсмическому квазирезонансу. Вступление системы сейсмических резонаторов в квазирезонанс.


Землетрясение вблизи о. Суматра привело к разрядке всего кластера сейсмических резонаторов в прилегающих регионах, при этом в течение суток после основного толчка произошло 146 землетрясений магнитудой более 4.0, а суммарная магнитуда составила 724.5.

1.9.6. Анализ землетрясения в Японии 11.03.2011 г.

Квазирезонансное землетрясение Тохоку 11.03.2011 г. является четвертым по мощности за время инструментальных исследований, оно также известно своими разрушительными последствиями для региона и мира по причине возникновения цунами и повреждения атомной станции Фукусима.

Скрытая стадия накопления сейсмической энергии.

Стадия подготовки квазирезонансного землетрясения. Второй этап сейсмического процесса – заключался в движении Марса к своему перигелию, и к моменту разрядки системы сейсмических резонаторов он – точно в перигелии. Солнце – в соединении с афелием Урана, оно в Водолее, на линии афелия-перигелия Урана, и выравнивается на регион. Кроме этого, ретроградный Сатурн – в соединении с афелием Юпитера, выравнивается с Юпитером, Уран – в соединении с апогеем Луны и в квадратном взаимоотношении с лунными узлами, восходящий
лунный узел — в точном соединении с нисходящим узлом Марса, нисходящий лунный узел — в соединении с восходящим узлом Юпитера и перигелием Сатурна. К моменту землетрясения две планеты, Юпитер и Марс, — находятся точно в своих перигелях.

Необратимый переход системы к сейсмическому квазирезонансу. Вступление системы сейсмических резонаторов в квазирезонанс.

Солнце, достигая 09.03.2011 гг. верхней кульминации, начинает разряжать систему сейсмических резонаторов, вызывая серию из трех форшоков, отстоящих друг от друга на несколько минут.

Луна в течение суток 11.03.2011 г. достигает квадратного взаимоотношения с Нептуном и такой же проекции на регион землетрясения, она — катализатор основного квазирезонансного землетрясения.

В момент землетрясения — в суточном движении точно на асценденте — афелий Марса, а также восходящий узел Нептуна, на десценденте — Нептун и его нисходящий узел, в верхней кульминации — перигелий Нептуна, в нижней кульминации — его афелий.

Таблица 8. Данные форшоков и основного квазирезонансного землетрясения в Японии 11.03.2011 г., а также положение планет и элементов их орбит в суточном движении

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Mg</th>
<th>Asc</th>
<th>Dsc</th>
<th>Culm upp</th>
<th>Culm low</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.03.2011</td>
<td>2:45:20</td>
<td>38,44</td>
<td>142,84</td>
<td>32,00</td>
<td>7,30</td>
<td>AN_Sa</td>
<td>A_Sa</td>
<td>Su_A_Ur</td>
<td>P_Ur</td>
</tr>
<tr>
<td>09.03.2011</td>
<td>2:57:16</td>
<td>38,36</td>
<td>142,91</td>
<td>23,20</td>
<td>5,70</td>
<td>AN_Sa</td>
<td>A_Sa</td>
<td>Su_A_Ur</td>
<td>P_Ur</td>
</tr>
<tr>
<td>09.03.2011</td>
<td>2:58:14</td>
<td>38,25</td>
<td>143,10</td>
<td>35,00</td>
<td>5,70</td>
<td>AN_Sa</td>
<td>A_Sa</td>
<td>Su_A_Ur</td>
<td>P_Ur</td>
</tr>
<tr>
<td>09.03.2011</td>
<td>4:37:04</td>
<td>38,67</td>
<td>142,99</td>
<td>37,80</td>
<td>5,60</td>
<td>AN_Ne</td>
<td>DN_Ne</td>
<td>AN_Ma</td>
<td>Sa_R_A_Ju</td>
</tr>
<tr>
<td>09.03.2011</td>
<td>18:16:16</td>
<td>38,32</td>
<td>142,43</td>
<td>22,00</td>
<td>6,00</td>
<td>AN_Ju</td>
<td>DN_Sa</td>
<td>AN_Sa</td>
<td>A_Ne</td>
</tr>
<tr>
<td>09.03.2011</td>
<td>18:44:38</td>
<td>38,50</td>
<td>143,17</td>
<td>23,80</td>
<td>5,90</td>
<td>DN_Sa</td>
<td>AN_Ne</td>
<td>A_Ne</td>
<td>P_Ne_Mo</td>
</tr>
<tr>
<td>09.03.2011</td>
<td>21:22:17</td>
<td>38,35</td>
<td>142,65</td>
<td>23,00</td>
<td>6,00</td>
<td>Ur_A_Ur</td>
<td>P_Ur</td>
<td>AN_Mo</td>
<td>DN_Mo_P_Sa</td>
</tr>
<tr>
<td>09.03.2011</td>
<td>21:24:01</td>
<td>38,30</td>
<td>142,81</td>
<td>15,00</td>
<td>6,50</td>
<td>Ur_A_Ur</td>
<td>P_Ur</td>
<td>AN_Mo</td>
<td>DN_Mo_P_Sa</td>
</tr>
<tr>
<td>10.03.2011</td>
<td>8:08:20</td>
<td>38,60</td>
<td>143,27</td>
<td>17,40</td>
<td>5,60</td>
<td>P_Ur</td>
<td>Su_A_Ur</td>
<td>AN_Ur</td>
<td>DN_Ur</td>
</tr>
<tr>
<td>11.03.2011</td>
<td>5:46:24</td>
<td>38,30</td>
<td>142,37</td>
<td>29,00</td>
<td>9,10</td>
<td>A_Ma</td>
<td>Ne</td>
<td>P_Ne</td>
<td>A_Ne</td>
</tr>
</tbody>
</table>
Квазирезонансное землетрясение Тохоку в Японии 11.03.2011 г. – дает самое наглядное представление о действительной мощи Нептуна, а также о способности Луны быть катализатором разрядки накопленной в очаге сейсмической энергии. Со времени открытия Нептуна он уже успел совершить полное обращение вокруг Солнца, но длительность инструментальных исследований сейсмических процессов не позволяет в полной мере оценить его влияние на сейсмогенез на планете. Современная сеть сейсмографов появилась относительно недавно, и Нептун с 1963 года прошел по эклиптике всего 4 полных знака зодиака, а Уран – 8 неполных знаков. Влияние Нептуна и Урана еще не изучено в достаточной степени, они еще не проявили в полной мере ни своего влияния посредством проекций на различные регионы Земли, ни влияния своих взаимоотношений с различными планетами в течение срока сейсмических наблюдений.

Это предстоит еще сделать в будущем, но не менее важным является ретроспективный анализ таких землетрясений, например, землетрясение 13.07.0869 г., которое японские ученые определили по архивным записям и геологическим изысканиям, сопровождалось подобным цунами в районе Сёндай. На эту дату Нептун также выравнивался на регион землетрясения из знака Водолея, а Уран – непосредственно проецировался на регион.

1.9.7. Анализ землетрясения на Камчатке 04.11.1952 г.

Это землетрясение – пятое по мощности в мире с магнитудой 9.0. Вначале считалось, что магнитуда этого землетрясения 8.2, но впоследствии она была пересчитана по его последствиям.

Землетрясение вызвало цунами до 15 м. у побережья Камчатки, в Калифорнии амплитуда волны составляла 1,4 м., цунами на Гавайях достигало высоты волн 3,5 м., а общий ущерб от разрушений, нанесенных этими волнами, был оценен в 800 000–1 000 000 долларов.
Скрытая стадия накопления сейсмической энергии.

Стадия подготовки квазирезонансного землетрясения.
Марс – в соединении с нисходящим узлом Сатурна и выровнен на ретроградный Уран и восходящий узел Юпитера. Солнце в соединении с нисходящим узлом Марса, оно выровнено с ретроградным Юпитером на линии афелий-перигелий Нептуна. Нептун в соединении с Сатурном, а также афелием Юпитера.

Марс движется к своему перигелию, Солнце – к соединению с нисходящим узлом Марса и афелием Нептуна, Луна – к соединению с восходящим узлом Урана.

Необратимый переход системы к сейсмическому квазирезонансу. Вступление системы сейсмических резонаторов в квазирезонанс.

Луна – на линии узлов Урана, она движется в течение суток до землетрясения к его восходящему узлу и достигает к моменту разрядки кластера сейсмических резонаторов точного с ним соединения, а также верхней кульминации. Восходят к моменту квазирезонансного землетрясения – афелий Марса и перигелий Урана, на десценденте – перигелий Юпитера, в верхней кульминации – перигелий Сатурна.

1.9.8. Анализ землетрясения в Аквиле, Италия 06.04.2009 г.

Скрытая стадия накопления сейсмической энергии.
Последнее землетрясение в этом регионе было в 1997 г. На регион проецируются линии перигеля и афелия Нептуна. Юпитер выравнивался на регион в 2006 году, Сатурн проецировался на регион в 2000-2001 гг.

Стадия подготовки квазирезонансного землетрясения.
Марс движется к своему перигелию, выровнен с ретроградным Сатурном, Уран – в афелии и в соединении с перигелием Марса, Нептун в соединении с Юпитером.

Необратимый переход системы к сейсмическому квазирезонансу. Сейсмический квазирезонанс.
Первый форшок произошел 30.03.2009 г. в 13:38:38 с М 4.0, глубина гипоцентра – всего 2 км, через 5 минут последовал еще один форшок М 3.5. К этому моменту Луна достигает жесткого квадратного взаимоотношения с Нептуном, она начинает разряжать кластер сейсмических резонаторов. В момент форшоков: перигелий и афелий Нептуна, которые проецируются на регион, достигают точного соединения с меридианом, при этом перигелий Нептуна – в верхней кульминации, а афелий – в нижней, Нептун – находится точно на десценденте.

Марс движется к своему перигелию, и к моменту основного землетрясения 06.04.2009 г. – он точно в перигелии, Луна в течение суток до землетрясения двигалась к выравниванию с Нептуном, их квадраты – проецируются на регион. В суточной динамике: точно на асценденте – Сатурн, афелий Нептуна – в верхней кульминации, перигелий Нептуна – в нижней кульминации, точно на десценденте – афелий Марса. Из восьми
описанных землетрясений в 3 случаях – Марс находился точно в перигелии.

1.10. Возможности прогнозирования землетрясений в системе «Эйдос»

1.10.1. Исследование методом АСК-анализа влияния Марса и элементов его орбиты в суточном движении на разрядку сейсмических очагов

Для выявления существования зависимости разрядки сейсмических очагов – от суточного движения Марса и элементов его орбиты сформирована Модель №3, где в качестве статистической базы использованы землетрясения магнитудой 4.5 и более в Индонезии за десятилетний период с 2004 по 2013 годы. Из этой базы создана сводная таблица с почасовыми показателями суммарной магнитуды, всего 13051 строк; в зависимость им поставлены почасовые показатели взаимных положений Марса, его афелия и перигелия, а также узлов – по отношению к базовым точкам для временного пояса + 7 GMT, всего 20 описательных шкал. Классификационная шкала разделена на 12 классов, в описательных шкалах – по 72 градации признаков.

Рисунок 19. Выводная форма по достоверности моделей при различных интегральных критериях. При исследовании данной обучающей выборки в режиме 3.5 наиболее достоверной является модель Abs, ей и придается статус текущей.
На основе выводной формы этой модели построен график, наглядно показывающий выявленное существование зависимости сейсмичности в регионе Индонезии – от суточного движения небесной сферы, вследствие чего с базовыми точками на местности совмещаются Марс, а также элементы его орбиты: восходящий и нисходящий узлы, афелий и перигелий.

Эти 5 астропараметров в суточной динамике вращения Земли вокруг своей оси последовательно проходят асцендент, верхнюю кульминацию, десцендент, и нижнюю кульминацию, совершая полный оборот, что и дает в сумме 20 описательных шкал в Модели №3. Астропараметры (описательные шкалы) раздлены на графике сплошными линиями. Каждая описательная шкала имеет 72 градации, из которых 36-37 градации, отмеченные на графике пунктиром, являются интересующими нас соединениями астропараметров с базовыми точками на местности.

Рисунок 20. Исследование зависимости почасовой суммарной сейсмической активности в регионе Индонезии с 2004 по 2013 гг. – от взаимного положения Марса и четырех элементов его орбиты: восходящего узла (AN - Ascending Node), нисходящего узла (DN – Descending Node), афелия (AF) и перигелия (PER), - по отношению к базовым точкам на местности – асценденту (Asc), десценденту (Dsc), верхней кульминации (UC) и нижней кульминации (LC).
Для нисходящего узла Марса, его афелия и перигелия, при их соединениях с базовыми точками – не выявляется четкого повышения сейсмичности, в то время как для Марса и его восходящего узла, при соединениях с базовыми точками, отчетливо видны всплески сейсмичности, при этом максимальная сейсмичность в регионе Индонезии отмечается, когда Марс находится в соединении с десцендентом (заходит за горизонт), или когда он в нижней кульминации, а для восходящего узла Марса – когда он восходит (соединен с асцендентом) или кульминирует (верхняя кульминация, соединение с меридианом).

1.10.2. Исследование методом АСК-анализа зависимости общей сейсмичности в мире от Луно-планетарных взаимоотношений

Примеры анализа землетрясений, приведенные в разделе 1.2., наглядно демонстрируют роль быстрых астропараметров в разрядке сейсмических очагов. Луна является самым динамичным небесным телом, ее движение создает максимальный спектр взаимоотношений с другими небесными телами, она потенциально способна разряжать как отдельные очаги-резонаторы, так и служить катализатором разрядки квазирезонансных землетрясений.

Общепринятым является предложение Л. Эйлера использовать плоскость эклиптики как основу неподвижной системы координат, пересечение с ней плоскости экватора как подвижной системы координат вследствие дрейфа точки весеннего равноденствия определяет основные астрометрические показатели и является отражением вынужденной прецессии оси вращения Земли.

Но в действительности плоскость эклиптики является плоскостью орбиты барицентра (центра масс системы Земля-Луна), а не орбиты Земли, поэтому все хорошо изученные характеристики лунного движения являются также и характеристиками орбитального движения Земли [3-4].

Л. Эйлер в работе «Уточненное исследование возмущений движения Земли, производимых Луной» [2] показывает, что движение Земли вокруг центра масс системы Земля-Луна
представляет собой точное отображение движения Луны со всеми неравенствами, поэтому движение Луны позволяет с большой точностью определят возмущения в движении Земли. Отсюда открывается возможность использовать характеристики лунного движения для описания, моделирования и прогнозирования многих глобальных процессов, происходящих на планете, таких как сейсмогенез, динамика полюса Земли, климатические аномалии.

Рассмотрим эти характеристики применительно к поставленной задаче. Подобное исследование для дальнейшего формирования прогноза на определенный временной период можно делать как для отдельных регионов, так и для всей планеты, в данном примере дан расчет прогноза на 2019 год для всей планеты, при этом от полноты и длительности статистических наблюдений в большой степени зависит качество прогнозирования землетрясений.

Для выявления существования зависимости общей сейсмичности на планете – от динамически изменяющихся взаимоотношений Луны и других небесных тел в геоцентрической системе координат в Модели №4 используется статистическая база землетрясений в мире с 1900 по 2018 гг., с магнитудой 5.0 и более, всего 83976 строк. На основе статистической базы землетрясений формируется файл «Input1».

С учетом того, что показатель магнитуды не отражает в полной мере степень разрушительности землетрясений, так как при одинаковой магнитуде могут быть различные показатели глубины залегания гипоцентров, в файле «Input1» вводится еще один показатель – Интенсивность землетрясений (Int_ZMT), который учитывает оба показателя и рассчитывается по формуле:

\[ Int\_ZMT = 3 + 1.5Mg - 3.5\log_{10}(Depth) \]    

Файл «Input2» формируется из 10 астропараметров, для этого исследования использованы астрономические показатели эклиптической долготы Луны, Солнца, 7 планет Солнечной системы, от Меркурия – до Нептуна, а также лунных узлов и апогея. Так как в плане влияния на сейсмические процессы исследуется возможное появление эмерджентных качеств при взаимоотношениях Луны и других астропараметров, вычитается
разность эклиптических долгот Луны и остальных астропараметров, при этом показатели могут быть как со знаком минус, так и со знаком плюс, в зависимости от того, приближается Луна к другому астропараметру или удаляется от него, таким образом получаем файл «Input2».

После объединения этих файлов по полю «Data» полученный файл «Inp_data» можно использовать для расчетов в системе «Эйдос».

Таблица 9. Файл Inp_data (фрагмент) на основе статистической базы землетрясений в мире для расчетов по 10 моделям в системе «Эйдос»

<table>
<thead>
<tr>
<th>Data</th>
<th>Time</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Mg</th>
<th>Int_ZMT</th>
<th>Mo_Sun</th>
<th>Mo_Ma</th>
<th>Mo_Jup</th>
<th>Mo_Sat</th>
<th>Mo_Ur</th>
<th>Mo_Nep</th>
<th>Mo_Rahu</th>
<th>Mo_Apog</th>
<th>Mo_Mer</th>
<th>Mo_Ven</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.07.1900</td>
<td>6:59:00</td>
<td>165,00</td>
<td>7,60</td>
<td>14,40</td>
<td>28,374</td>
<td>-7,6057</td>
<td>181,5467</td>
<td>160,46950</td>
<td>-8,43666</td>
<td>20,09418</td>
<td>-0,74959</td>
<td>161,21549</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.10.1900</td>
<td>12:28:00</td>
<td>60,00</td>
<td>7,70</td>
<td>14,55</td>
<td>21,4761</td>
<td>-7,85914</td>
<td>190,18794</td>
<td>162,32880</td>
<td>45,42168</td>
<td>52,26964</td>
<td>24,43730</td>
<td>-137,89510</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.10.1900</td>
<td>9:11:00</td>
<td>11,00</td>
<td>7,70</td>
<td>14,55</td>
<td>21,4761</td>
<td>-7,85914</td>
<td>190,18794</td>
<td>162,32880</td>
<td>45,42168</td>
<td>52,26964</td>
<td>24,43730</td>
<td>-137,89510</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.08.1901</td>
<td>13:01:00</td>
<td>22,00</td>
<td>7,90</td>
<td>14,85</td>
<td>21,01488</td>
<td>183,34368</td>
<td>7,85914</td>
<td>190,18794</td>
<td>162,32880</td>
<td>45,42168</td>
<td>52,26964</td>
<td>24,43730</td>
<td>-137,89510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.08.1901</td>
<td>18:28:00</td>
<td>40,00</td>
<td>7,70</td>
<td>14,55</td>
<td>21,01488</td>
<td>183,34368</td>
<td>7,85914</td>
<td>190,18794</td>
<td>162,32880</td>
<td>45,42168</td>
<td>52,26964</td>
<td>24,43730</td>
<td>-137,89510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.09.1902</td>
<td>4:23:00</td>
<td>14,00</td>
<td>7,70</td>
<td>14,55</td>
<td>21,01488</td>
<td>183,34368</td>
<td>7,85914</td>
<td>190,18794</td>
<td>162,32880</td>
<td>45,42168</td>
<td>52,26964</td>
<td>24,43730</td>
<td>-137,89510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.09.1902</td>
<td>9:11:00</td>
<td>11,00</td>
<td>7,70</td>
<td>14,55</td>
<td>21,01488</td>
<td>183,34368</td>
<td>7,85914</td>
<td>190,18794</td>
<td>162,32880</td>
<td>45,42168</td>
<td>52,26964</td>
<td>24,43730</td>
<td>-137,89510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.09.1902</td>
<td>20:18:00</td>
<td>16,00</td>
<td>7,70</td>
<td>14,55</td>
<td>21,01488</td>
<td>183,34368</td>
<td>7,85914</td>
<td>190,18794</td>
<td>162,32880</td>
<td>45,42168</td>
<td>52,26964</td>
<td>24,43730</td>
<td>-137,89510</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В качестве классификационной шкалы в файле «Inp_data» берется Интенсивность землетрясений (поле 7 «Int_ZMT»), а описательными шкалами являются поля 8-17 с 10 астропараметрами, используются 12 градаций классификационной шкалы и 72 градации описательных шкал.

Рисунок 21. Выводная форма по достоверности статистических и системно-когнитивных моделей при различных интегральных критериях
После расчетов 10 моделей и выявления самой достоверной модели она используется для прогнозирования землетрясений по авторской методике. В данном случае самой достоверной моделью является Abs, для которой L2 мера проф. Луценко составляет 0.839 из возможных 1.0.

1.10.3. Методика численных расчетов прогнозных форм

1.10.3.1. Расчет силы планет в файле «ABS_Syla_Planet»

Для расчета силы планет используется выводная форма программы Эйдос «Abs.dbf», которая имеет 17 полей.

Таблица 10. Выводная форма «Abs» (фрагмент).

<table>
<thead>
<tr>
<th>КОД_ИМЯ</th>
<th>CLS1</th>
<th>CLS2</th>
<th>CLS3</th>
<th>CLS4</th>
<th>CLS5</th>
<th>CLS6</th>
<th>CLS7</th>
<th>CLS8</th>
<th>CLS9</th>
<th>CLS10</th>
<th>CLS11</th>
<th>CLS12</th>
<th>SUM_HI5</th>
<th>SREDN</th>
<th>DISP</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>104</td>
<td>111</td>
<td>258</td>
<td>523</td>
<td>635</td>
<td>527</td>
<td>195</td>
<td>42</td>
<td>22</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>24282</td>
<td>202,3333333</td>
<td>212,2445159</td>
</tr>
<tr>
<td>79</td>
<td>99</td>
<td>69</td>
<td>184</td>
<td>403</td>
<td>477</td>
<td>530</td>
<td>174</td>
<td>38</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1936</td>
<td>101,3333333</td>
<td>197,9611226</td>
</tr>
<tr>
<td>100</td>
<td>79</td>
<td>168</td>
<td>214</td>
<td>452</td>
<td>621</td>
<td>430</td>
<td>196</td>
<td>38</td>
<td>32</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2176</td>
<td>186,2500000</td>
<td>287,6751151</td>
</tr>
<tr>
<td>101</td>
<td>98</td>
<td>84</td>
<td>252</td>
<td>489</td>
<td>904</td>
<td>363</td>
<td>189</td>
<td>20</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2119</td>
<td>179,6333333</td>
<td>208,8787778</td>
</tr>
<tr>
<td>102</td>
<td>56</td>
<td>71</td>
<td>195</td>
<td>455</td>
<td>450</td>
<td>656</td>
<td>271</td>
<td>60</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2217</td>
<td>184,7600000</td>
<td>224,1327224</td>
</tr>
<tr>
<td>103</td>
<td>54</td>
<td>104</td>
<td>230</td>
<td>430</td>
<td>653</td>
<td>417</td>
<td>200</td>
<td>39</td>
<td>15</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>2149</td>
<td>179,0833333</td>
<td>215,0639980</td>
</tr>
<tr>
<td>104</td>
<td>51</td>
<td>61</td>
<td>178</td>
<td>362</td>
<td>588</td>
<td>288</td>
<td>133</td>
<td>31</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1713</td>
<td>142,7500000</td>
<td>188,7687674</td>
</tr>
<tr>
<td>105</td>
<td>42</td>
<td>64</td>
<td>142</td>
<td>377</td>
<td>371</td>
<td>541</td>
<td>204</td>
<td>51</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1806</td>
<td>159,5000000</td>
<td>183,6580220</td>
</tr>
<tr>
<td>106</td>
<td>75</td>
<td>137</td>
<td>274</td>
<td>581</td>
<td>767</td>
<td>653</td>
<td>269</td>
<td>60</td>
<td>29</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2850</td>
<td>217,5000000</td>
<td>278,2544617</td>
</tr>
<tr>
<td>107</td>
<td>58</td>
<td>40</td>
<td>112</td>
<td>399</td>
<td>590</td>
<td>292</td>
<td>147</td>
<td>33</td>
<td>13</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1664</td>
<td>138,6666667</td>
<td>190,6941069</td>
</tr>
<tr>
<td>108</td>
<td>44</td>
<td>43</td>
<td>180</td>
<td>319</td>
<td>583</td>
<td>325</td>
<td>108</td>
<td>28</td>
<td>13</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1370</td>
<td>114,1666667</td>
<td>187,8741254</td>
</tr>
<tr>
<td>109</td>
<td>101</td>
<td>345</td>
<td>311</td>
<td>659</td>
<td>712</td>
<td>593</td>
<td>327</td>
<td>72</td>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>3306</td>
<td>273,5000000</td>
<td>326,8754230</td>
</tr>
<tr>
<td>110</td>
<td>30</td>
<td>60</td>
<td>180</td>
<td>478</td>
<td>725</td>
<td>430</td>
<td>204</td>
<td>47</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2240</td>
<td>185,6666667</td>
<td>245,9338133</td>
</tr>
<tr>
<td>111</td>
<td>42</td>
<td>48</td>
<td>106</td>
<td>234</td>
<td>313</td>
<td>240</td>
<td>122</td>
<td>36</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1154</td>
<td>96,1666667</td>
<td>109,0961490</td>
</tr>
<tr>
<td>112</td>
<td>55</td>
<td>69</td>
<td>181</td>
<td>219</td>
<td>402</td>
<td>279</td>
<td>129</td>
<td>30</td>
<td>15</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>1520</td>
<td>126,6666667</td>
<td>139,7679242</td>
</tr>
<tr>
<td>113</td>
<td>24</td>
<td>46</td>
<td>94</td>
<td>168</td>
<td>313</td>
<td>150</td>
<td>67</td>
<td>20</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>888</td>
<td>74,0000000</td>
<td>95,0712651</td>
</tr>
<tr>
<td>114</td>
<td>35</td>
<td>42</td>
<td>121</td>
<td>245</td>
<td>434</td>
<td>336</td>
<td>158</td>
<td>43</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1424</td>
<td>118,6666667</td>
<td>146,7130828</td>
</tr>
<tr>
<td>115</td>
<td>57</td>
<td>64</td>
<td>174</td>
<td>331</td>
<td>472</td>
<td>330</td>
<td>167</td>
<td>28</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>1624</td>
<td>135,3333333</td>
<td>157,8153889</td>
</tr>
<tr>
<td>116</td>
<td>5</td>
<td>9</td>
<td>36</td>
<td>71</td>
<td>96</td>
<td>71</td>
<td>36</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>334</td>
<td>27,3333333</td>
<td>34,6990031</td>
</tr>
<tr>
<td>117</td>
<td>10</td>
<td>24</td>
<td>46</td>
<td>93</td>
<td>179</td>
<td>217</td>
<td>110</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>714</td>
<td>59,5000000</td>
<td>76,9019446</td>
</tr>
<tr>
<td>118</td>
<td>59</td>
<td>69</td>
<td>126</td>
<td>297</td>
<td>432</td>
<td>245</td>
<td>102</td>
<td>23</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1358</td>
<td>113,1666667</td>
<td>140,294753</td>
</tr>
</tbody>
</table>

Поле 2 – градации описательных шкал, поля 3-14 – градации классификационной шкалы Интенсивности землетрясений с числом сейсмических событий, попадающих в каждую градацию классификационной и описательных шкал, поле 15 – сумма землетрясений в каждой градации описательных шкал. За период 118 лет распределение сейсмособытий при таких быстро двигающихся астропараметрах, как Луна и Марс, является неравномерным и детерминированным, в зависимости от их эклиптических долгот и динамически изменяющихся конфигураций взаимоотношений.
Содержание полей 1-15 (выделено цветом) переносится в прогнозную форму «ABS_Syla_Planet».

Таблица 11. Прогнозная форма «ABS_Syla_Planet» (фрагмент).

<table>
<thead>
<tr>
<th>Столбец</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABS_Numb</td>
</tr>
<tr>
<td>2</td>
<td>ABS_Name</td>
</tr>
<tr>
<td>3</td>
<td>ABS_Planet</td>
</tr>
<tr>
<td>4</td>
<td>Int_ZMT</td>
</tr>
<tr>
<td>5</td>
<td>Summ_ZMT</td>
</tr>
<tr>
<td>6</td>
<td>Result</td>
</tr>
<tr>
<td>7</td>
<td>Int_ZMT</td>
</tr>
<tr>
<td>8</td>
<td>Summ_ZMT</td>
</tr>
<tr>
<td>9</td>
<td>Result</td>
</tr>
<tr>
<td>10</td>
<td>Int_ZMT</td>
</tr>
<tr>
<td>11</td>
<td>Summ_ZMT</td>
</tr>
<tr>
<td>12</td>
<td>Result</td>
</tr>
<tr>
<td>13</td>
<td>Int_ZMT</td>
</tr>
<tr>
<td>14</td>
<td>Summ_ZMT</td>
</tr>
<tr>
<td>15</td>
<td>Result</td>
</tr>
</tbody>
</table>

В этом файле – 720 строк (по числу градаций описательных шкал) и 29 полей. Первые 15 полей – скопированные и перенесенные данные из полученного в режиме 3.5 файла «Abs.dbf».

В полях 16-27 – автоматически идет расчет силы планет по количеству и интенсивности землетрясений (Int_ZMT) в каждой из 12 градаций классификационных шкал, при этом количество землетрясений в классах умножается на максимальный показатель интенсивности землетрясений в каждой градации из выводной формы 2.1 программы Эйдос. В поле 28 (Summ_INT) – суммируются результаты столбцов 16-27. В поле 29 (Syla_Planet) – искомый суммарный результат. Расчет в этом столбце идет по формуле:

\[ Syla_{\text{Planet}} = \frac{\text{Summ}_ZMT \times \text{Summ}_\text{Int}_ZMT \times 1000}{\text{487371.41}} \]

где 487371.41 - это суммарная интенсивность землетрясений из файла «Inp_data» по столбцу 7 (Int_ZMT).
1.10.3.2. Расчет в файле «Bala»

Файл «Bala» имеет три расчетных листа. 1-й лист файла «Bala» по структуре такой же, как файл «Input2», но содержит астрономические показатели 10 астропараметров Луно-планетарных взаимоотношений на каждый день прогнозного периода, в программе прогнозирования землетрясений он используется при верификации модели.

На втором листе «Grint» – 720 строк, по числу градаций 10 описательных шкал, и 4 поля. В первые три из этих четырех полей переносятся скопированные из файла «Attributes», полученного после расчетов в режиме 3.5 программы Эйдос, 3 поля: «NAME_ATR», «MIN_GRINT», «MAX_GRINT», где 1 поле – наименование каждой градации, а второе и третье поля – содержат минимальный и максимальный показатели градаций описательных шкал. В 4 поле переносится содержание итогового поля из файла «ABS_Syla_Planet».

На 3-м листе «Bala» число строк – соответствует числу дней года (или другого прогнозного периода), первые 11 полей – аналогичны полям 1-го листа файла «Bala», в следующих полях 12-21 – по формуле:

\[ =ВПР(B2;Grint!$B$1:$D$72;3;1) \]

будет идти расчет на каждый прогнозный день, в зависимости от того, в какой интервал из 72 градаций 10 описательных шкал попадает тот или иной астропараметр из будущего прогнозного периода.

Таким образом, на 3 листе «Bala» в столбцах 12-21 (они выделены цветом) формируется прогноз (Сила планет) по каждому астропараметру на каждый день прогнозного периода.

Таблица 12. Прогнозная форма «Bala» (фрагмент).
1.10.3.3. Расчет в файле: «Rasp_PROGNOZ»

Последний прогнозный файл – «Rasp_PROGNOZ». В нем число строк – по числу дней прогнозного периода, поля 1-21 – перенесены с 3-го листа формы «Bala», в этой форме идет суммарный расчет по 10 астропараметрам, и таким образом в поле 22 формируется прогноз общей сейсмичности на каждый день определенного периода времени. Результат расчетов в этих прогнозных формах можно представить в виде графика-прогноза общей сейсмичности в исследуемом регионе или в мире.

Таблица 13. Прогнозная форма «Rasp_PROGNOZ» (фрагмент).

1.10.4. Прогнозирование землетрясений в режиме 2.3.2.12 системы «Эйдос»

По вышеописанной методике профессором Е.В. Луценко в январе 2019 г. написана программа прогнозирования землетрясений, где расчет прогнозных форм происходит в автоматическом режиме. Система «Aidos-X++» с методикой прогнозирования землетрясений в режиме 2.3.2.12 размещена в открытом доступе, ее можно скачать по ссылке: (http://lc.kubagro.ru/aidos/Aidos-X.htm). В открытом доступе находится также исходный текст программы Эйдос с режимом 2.3.2.12 по ссылке: (http://lc.kubagro.ru/___AIDOS-X.txt).
Исследователю необходимо лишь подготовить нужные для расчетов файлы в соответствии с вышеописанными шагами: «Input1», «Input2», а также файл «Inp_rasp», содержащий показатели по 10 описательным шкалам на каждый день прогнозного периода, нужно поместить эти файлы в папку «Inp_data». Далее после выбора режима 2.3.2.12 программа в автоматическом режиме соединяет исходные файлы статистической базы землетрясений и астропараметров по полю «Data», производит расчет в соответствии с вышеописанной методикой и выдает результаты расчетов в виде графического файла-прогноза. Расчет прогноза общей сейсмичности в мире на 2019 г. для статистической базы из 83976 строк на моем компьютере проходит в течение 18 минут, при этом требуется только однократное переключение режима, и этот расчет не мешает выполнению других видов одновременной работы на компьютере.

На графике-прогнозе (рисунок 22) по оси X - временные периоды, по оси Y – нормированные значения суммированных ежедневных показателей Силы планет по 10 астропараметрам. Прогноз представлен в виде сейсмических циклов повышения и снижения общей сейсмичности. Основная гармоника низких частот задается взаимодействием Луны и Нептуна, с наложением гармоник от более быстро двигающихся небесных тел. Высокочастотные пики образуются вследствие взаимодействия Луны и быстрых астропараметров, таких как Марс, Солнце, Венера и Меркурий, они определяют локальные высокочастотные всплески сейсмичности.

Так как имеются отличия в строении земных недр в различных регионах планеты, что фиксируется в региональных статистических базах, а также различия в локализации планетарных проекций в годовой динамике, эти специфические особенности отражаются в региональных графиках-прогнозах: при общем сходстве прогнозных файлов имеются временные сдвиги кривых и некоторые расхождения в расположении высокочастотных пиков.
Рисунок 22. Графическая форма прогноза землетрясений в мире на 2019 г., выполненная в автоматическом режиме в системе «Эйдос»

Контроль реализации исполнения прогноза осуществляется в этом же режиме программы после формирования файла «Inp_fakt» и добавления его в папку «Inp_data», этот файл формируется на основе происшедших в прогнозный период времени землетрясений путем создания сводной таблицы по полю «Int_ZMT» и определенной нормировки этих данных.

Рисунок 23. График-прогноз на 2019 г. общей сейсмичности в мире и фактическая реализация землетрясений
Нормировка осуществляется путем преобразования данных из выводной формы «Rasp_PROGNOZ.dbf», полученной после расчета прогноза в программе Эйдос, где используются показатели 26 поля «ProgNNNorm», а также показатели суммарной интенсивности землетрясений из сводной таблицы, по следующей формуле:

$$Inp\_Fakt\_ZMT = (ProgNNNorm + 0.1) \times S\_Int\_ZMT/(S\_Int\_ZMT-0.5)$$

<table>
<thead>
<tr>
<th>Таблица 14. Файл «Inp_Fakt_Norm»</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1 Data</td>
</tr>
<tr>
<td>2 02.01.2023</td>
</tr>
<tr>
<td>3 03.01.2023</td>
</tr>
<tr>
<td>4 04.01.2023</td>
</tr>
<tr>
<td>5 05.01.2023</td>
</tr>
<tr>
<td>6 06.01.2023</td>
</tr>
<tr>
<td>7 07.01.2023</td>
</tr>
<tr>
<td>8 08.01.2023</td>
</tr>
<tr>
<td>9 09.01.2023</td>
</tr>
<tr>
<td>10 10.01.2023</td>
</tr>
</tbody>
</table>

Эта нормировка позволяет увязать на графике реализации прогнозную кривую и фактическую реализацию, чтобы связать данные прогноза и данные фактических землетрясений через систему коэффициентов таким образом, чтобы даже при очень больших показателях фактических данных они не удалялись далеко от прогностических данных, но и не инвертировались, сохраняли нормальные пропорции. Причины необходимости подобной нормировки будут понятны из следующего раздела.

1.10.5. Прогнозирование резонансных землетрясений в режиме 2.3.2.12 системы «Эйдос»

Программа «Aidos-X++» позволяет также в режиме 2.3.2.12 регистрировать и анализировать состояние кластеров сейсмических резонаторов в регионах. В выводной форме программы «PrognREZON» в автоматическом режиме методом сглаживания определяются минимумы сейсмических циклов. Специалист имеет возможность провести экспертную оценку и исправить положение минимумов сейсмических циклов, если это
необходимо, после чего получить для анализа график накопления сейсмической энергии.

Рисунок 24. Скриншот режима 2.3.2.12 программы «Aidos-X++». Блок «Исправление расположения минимумов прогноза и рисование графиков прогнозов резонансых ЗМТ» имеет кнопки для исправления расположения минимумов, а также получения графиков резонансых землетрясений.

От цикла — к циклу, и от минимума — к минимуму, рассчитывается прогноз с нарастающим итогом, а также показатели фактической реализации землетрясений с
нарастающим итогом, результаты можно визуализировать в графической форме.

На рисунке 25 синяя линия – прогноз по каждому сейсмическому циклу в виде нарастающего итога ежедневных показателей Силы планет, желтая линия – фактическая реализация в виде нарастающего итога ежедневных показателей суммарной интенсивности землетрясений из сводной таблицы.

Рисунок 25. Динамическое состояние кластера сейсмических резонаторов в регионе Калифорнии в 2019 году, снижение сейсмического ответа в январе-июне привело к предельному возрастанию добротности системы очагов-резонаторов, что реализовалось в начале июля 2019 г. в виде квазирезонанса, в результате которого в Калифорнии появился новый разлом, видимый их космоса.

Ежедневная суммарная интенсивность землетрясений должна быть примерно равна прогнозной приходящей планетарной энергии сейсмогенеза для того, чтобы кластер сейсмических резонаторов находился в состоянии сейсмического равновесия. Но это утверждение выполняется только для отдельных циклов, когда на графике прогнозная линия и линия реализации сейсмического ответа примерно совпадают.

Структура и качества упругости элементов, составляющих грунты в определенных регионах, позволяют в течение длительного периода запасать сейсмическую энергию и разряжать ее в виде резонансных землетрясений, поэтому линия
фактической реализации будет в той или иной степени расходиться с прогнозной, при этом возможны как значительное уменьшение сейсмического ответа, так и значительное его превышение.

В течение нескольких месяцев отмечалось быстрое накопление сейсмической энергии в регионе, что создавало опасность резонансного землетрясения, при этом за день до основного землетрясения был сделан прогноз, что 06-07.07.2019 – опасный период в сложившейся сейсмической ситуации.


На графике-прогнозе даты построены на 00:00:00 GMT, форшок 04.07.2019 и основное землетрясение 06.07.2019 г. приходятся на восходящее плечо высокочастотных пиков и вершину сейсмического цикла.

Таким образом, режим 2.3.2.12 программы «Aidos-X++» позволяет проводить мониторинг готовности кластера сейсмических резонаторов к энергетической разрядке в виде резонансных землетрясений. Нужно отметить, что сейсмичность рассчитывается на основе статистической базы землетрясений, которые произошли в определенном регионе, в соответствии с этим и прогноз строится на регион с теми же координатами, указать точно местоположение будущего землетрясения по графику-прогнозу нельзя, для этого необходимы дополнительно соответствующие инструментальные наблюдения за состоянием недр.

Если не применять специальную нормировку, описанную в предыдущем разделе, для контроля реализации прогноза, будет складываться иллюзорное представление о хаотичности сейсмического ответа в сравнении с прогнозом.

В автоматическом режиме в программе «Aidos-X++» можно рассчитать и низкочастотные планетарные воздействия на тот или иной регион или на планету в целом для того, чтобы выявить возможный уровень накопления сейсмической энергии. Для этого необходимо подготовить файл «Input2» с соответствующими астропараметрами, включающими в себя взаимоотношения медленно двигающихся астропараметров: планет от Юпитера – до Нептуна, а также лунный угол, всего – 10 описательных шкал, файл «Input1» остается без изменений, в данном случае для
расчетов использовалась база землетрясений в мире 1900 – 2018 гг, с магнитудой 5.0 и более, всего 83976 строк.

Рисунок 27. График-прогноз на 2019 г. низкочастотных планетарных воздействий, способных вызвать резонансные землетрясения в мире

График-прогноз, полученный в результате расчетов в режиме 2.3.2.12 программы «Эйдос-Х++», свидетельствует, что максимальное воздействие планетарной энергии низких частот будет отмечаться в июле-сентябре 2019 г., что увеличивает вероятность возникновения квазирезонансных землетрясений в мире в этот период.

1.10.6. Прогнозирование общей сейсмичности на длительные временные периоды

Ценность этой методики прогнозирования заключается также в том, что она дает представление о сейсмичности в выбранном исследуемом регионе или во всем мире на любой разумный период времени.

Для прогноза выбирается соответствующая статистическая база землетрясений, в данном случае использована региональная база Аляски с 1900 по 2018 гг. Файл «Inp_rasp» должен содержать астропараметры на весь прогнозный период.
После расчетов в программе «Эйдос» можно получить график-прогноз сейсмичности по региону Аляски на период 2019-2029 гг.


Рисунок 28 демонстрирует, что на длительном периоде прогнозирования также существуют сложные детерминированные периоды подъема и спада сейсмичности.

Рисунок 29. Наложение двух прогнозных карт: по региону Аляски и Камчатки. В прогнозной карте Аляски сглаженная кривая – желтая, а
Камчатки – синяя. Практически регионы различаются только по долготам, а широты – одни и те же. Тем не менее, имеются различия в прогнозе общей сейсмичности по годам. В настоящее время общая сейсмичность по региону Аляски превышает сейсмичность Камчатки, ситуация изменится в 2020-2021 гг., начиная с 2022 года сейсмичность в регионах выравнивается, а с 2025 года она вновь будет выше в регионе Аляски.

1.11. Создание и развитие методики прогнозирования землетрясений

1.11.1. Поиски внешних причин сейсмогенеза и прогнозирование землетрясений в ручном режиме

Поиски закономерностей планетарных взаимоотношений, которые способны привести к возникновению крупных землетрясений, начались в 2005 году, а к 2010 году в общих чертах уже была разработана методика прогнозирования землетрясений. Расчеты в ручном режиме занимали много времени, тем не менее, постепенно приобретался опыт и появлялись удачные прогнозы землетрясений, которые вселяли уверенность, что прогнозирование землетрясений – реальный процесс.

К 2012 году эта уверенность настолько окрепла, что автор решилась на публикацию прогнозов. Несколько прогнозов были представлены в Российский Экспертный Совет по прогнозу землетрясений и оценке сейсмической опасности, по результатам было получено подтверждение, что прогнозы полностью реализовались. Так, например, был сделан прогноз, что 29.08. – 31.08.2012 г. для зон в сейсмопрогнозной карте №1 вероятно землетрясение с магнитудой M 6.5-7.0 (+-0.2).
Рисунок 30. Проекция планет и элементов их орбит на прогнозируемый
регион землетрясения на 29.08. – 31.08.2012 г. Синие линии – проекции
планет и элементов их орбит на земную поверхность, красные кружки –
предполагаемые точки реализации сейсмособытия, красный кружок –
место реально произшедшего землетрясения.

В действительности же это землетрясение произошло
немного севернее, чем прогнозировалось (http://geofon.gfz-
potsdam.de/eqinfo/event.php?id=gfz2012rcyo), его координаты
10,78 N° и 126.79°E, и магнитуда его была несколько выше –
М7.5, вместо расчетного порогового значения М 7.2, но
результаты убедительно доказывали, что краткосрочный прогноз
землетрясений возможен, вопреки официально существующему
мнению, что прогнозирование землетрясений осуществимо
только для долгосрочных периодов.
Более того, для прогноза не было использовано никаких инструментальных методов, применяемых в сейсмологии, прогнозы были сделаны на основе сравнительного анализа сейсмособытий из каталога землетрясений [1] и положения планет на эклиптике, их проекций на земную поверхность, а также планетарных взаимоотношений. Кроме того, уже в это время для прогнозирования землетрясений использовались такие элементы орбит, как планетарные узлы, афелий и перигелий.

Таким образом, был сделан вывод, что экзогенные по отношению к Земле факторы способны влиять на сейсмогенез и вызывать ощутимые результаты в виде крупных землетрясений, детерминированных во времени и пространстве, но трудоемкость ручных расчетов не позволяла делать регулярные прогнозы землетрясений.

1.11.2. Поиски закономерностей сейсмогенеза с помощью АСК-анализа и системы «Эйдос»

С октября 2012 года методика начала отрабатываться с помощью АСК-анализа и его инструментария – системы «Эйдос», создателем которой является проф. Е.В. Луценко.

АСК-анализ основан на системной нечеткой интервальной математике, что обеспечивает обработку и анализ больших объемов фрагментированных и зашумленных данных, к которым с полным правом можно отнести статистические базы землетрясений.

Система «Aidos-X» разрешает анализировать большие статистические базы землетрясений, что позволило в течение нескольких лет выявить, подтвердить или уточнить найденные ранее закономерности сейсмических процессов, как в мире, так и в отдельно взятых регионах. Эти закономерности нашли свое выражение в методике прогнозирования землетрясений и в графиках-прогнозах, которые частично рассчитывались в программе «Эйдос», а частично – вручную.

Рисунок 31. График-прогноз по региону Аляски на второе полугодие 2018 г. и реализация землетрясений с М 5.5 и более.

Графики были не совершенными, и для их создания в полуручном режиме требовалось немало времени, тем не менее, они давали наглядное представление о том, как работает методика прогнозирования землетрясений.

1.11.3. Прогнозирование землетрясений в автоматическом режиме на основе системы «Эйдос»

Появилась реальная возможность в течение нескольких минут создавать графики-прогнозы общей сейсмичности для регионов и всего мира, при этом качество прогноза зависит только от качества и полноты статистической базы землетрясений по выбранному региону.

В течение января 2019 г. были рассчитаны графики-прогнозы по нескольким регионам, а в феврале 2019 г., после подготовки соответствующей статистической базы – график-прогноз общей сейсмичности в целом для планеты (рисунок 22).

Рисунок 32. График-прогноз по региону Аляски на 2019 г., опубликован впервые 25.01.2019 г.

1.12. Оценка реализации землетрясений в соответствии с графиками-прогнозами

1.12.1. Метод оценки реализации землетрясений в режиме 2.3.2.12 системы «Эйдос»

Для ретроспективного анализа, позволяющего дать оценку реализации землетрясений в соответствии с графиками-прогнозами необходимо создать файл «Inp_Fakt» в который вносятся данные о реально происшедших землетрясениях с нормированными показателями ежедневной суммарной интенсивности землетрясений, при этом возможно использовать выборки из статистических баз землетрясений с различными градациями магнитуды. Ниже представлены графики с
результатами реализации прогнозов крупных землетрясений в 2019 году.

1.12.2. Графики-прогнозы общей сейсмичности в мире и регионах и реализация землетрясений

Рисунок 33. График-прогноз общей сейсмичности в мире на 2019 год и реализация землетрясений с магнитудой 6.0 и более.

Наглядно видно, что крупные землетрясения в мире группируются по высокочастотным пикам и вершинам сейсмических циклов. Их больше в верхней половине графика, чем в нижней, но и в нижней половине землетрясения часто приурочены к высокочастотным пикам. Землетрясений происходит больше на восходящих отрезках сейсмических циклов, чем на нисходящих.

В регионе Калифорнии слабые грунты, вследствие чего землетрясения происходят на небольшой глубине, соответственно, они обладают большей интенсивностью. На представленном графике видно, что в январе-марте 2019 г. происходили единичные землетрясения с магнитудой 4.0 и более, в апреле, с окончанием одного сейсмического периода и началом нового, ситуация стала изменяться, в июльском сейсмическом цикле в регионе Калифорнии произошло квазирезонансное
землетрясение, афтершоки также группируются на высокочастотных пиках.

Рисунок 34. График-прогноз общей сейсмичности в регионе Калифорнии на 2019 год и реализация землетрясений с магнитудой 4.0 и более.

Рисунок 35. График-прогноз общей сейсмичности в регионе Аляски на 2019 год и реализация землетрясений с магнитудой 4.5 и более.

В строении разломов регионов Аляски и Камчатки много общего, но качество прогнозов различно, так как каталоги землетрясений в свободном доступе имеют различия. Прогноз землетрясений строится на основе доступных каталогов.
сеансобъектов, чем полнее каталог землетрясений, тем более совершенным является прогноз. По региону Аляски в свободном доступе имеются полные статистические базы, а по региону Камчатки – начиная с М3.5, поэтому график-прогноз по региону Аляски имеет более правильный вид, без ложных высокоочастотных пиков.

Рисунок 36. График-прогноз общей сейсмичности в регионе Камчатки на 2019 год и реализация землетрясений с магнитудой 5.0 и более.

В июне-июле 2019 г. количество землетрясений с магнитудой 5.0 и более возросло в сравнении с первыми месяцами 2019 г., что связано активным воздействием на сейсмические процессы Нептуна и Урана, но большое влияние на регион Камчатки оказывают проекции афелия и перигелия Марса. В периоды, когда линии этих элементов планетарной орбиты Марса проецируются на регион Камчатки, возрастает количество землетрясений средней интенсивности.

График-прогноз по региону Японии не отличается совершенством, так как в свободном доступе имеются статистические базы землетрясений с магнитудой от 4.5, что не позволяет сделать более реальный прогноз землетрясений. В то же время статистическая база японской сейсмологической службы обширна, но не содержит в легко доступном виде данных о координатах и гипоцентрах землетрясений.
Рисунок 37. График-прогноз общей сейсмичности в регионе Японии на 2019 год и реализация землетрясений с магнитудой 5.0 и более.

1.12.3. Динамическое наблюдение за воздействием Нептуна и Урана на сейсмические процессы

К настоящему времени остается не исследованным в полной мере влияние на сейсмические процессы медленно движущихся планет, таких как Нептун и Уран, соответственно, оно не может быть зафиксировано в прогнозе на проспективные периоды. В то же время, это не учтенное влияние оказывается настолько значимым, что требует постоянного пристального внимания и прогнозирования в ручном режиме. Ниже приводится пример подобного воздействия Нептуна и Урана на сейсмические процессы. В ручном режиме был сделан прогноз об активизации сейсмических процессов в период июньского полнолуния 2019 года. Реально в течение этого периода в мире произошло 24 землетрясения с магнитудой 5.0 и более, в том числе два землетрясения с M 6.1, а также M 6.3 и M 7.3.

Таблица 15. Данные землетрясений, которые произошли в мире в период июньского полнолуния в 2019 г.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.06.2019</td>
<td>21:56:10</td>
<td>-21,18</td>
<td>-174,17</td>
<td>13,00</td>
<td>6,10</td>
</tr>
<tr>
<td>15.06.2019</td>
<td>22:55:04</td>
<td>-30,64</td>
<td>-178,10</td>
<td>46,00</td>
<td>7,30</td>
</tr>
<tr>
<td>15.06.2019</td>
<td>23:04:06</td>
<td>-30,52</td>
<td>-178,24</td>
<td>35,00</td>
<td>5,20</td>
</tr>
</tbody>
</table>
Прогноз повышения сейсмичности был сделан на основании того, что Луне для выравнивания с Солнцем предстояло пройти линию узлов Урана, в то время как Нептун находился на линии афелия-перигелия Урана, при этом Нептун находился в квадрате (90 градусов) к Луне.

Разрядка сейсмических очагов, вследствие сложившихся планетарных взаимоотношений, началась 15.06.2019 г. в 21:56:10 GMT землетрясением точно на линии проекции Урана, координаты этого сейсмического толчка 21°08'32"S;174°01'55"W, далее сейсмическая активность сместилась по линии проекции Урана на 10 градусов южнее, здесь в течение полнолуния произошло 12 землетрясений, еще одно землетрясение произошло на этой же линии проекции Урана южнее Африки, с координатами 44°44'29"S и 35°21'25"E.
Рисунок 38. Линии проекций Солнца, Луны, лунного апогея, Урана, Нептуна, их узлов и линий афелия-перигелия на земную поверхность в период июньского полнолуния 2019 года, а также координаты землетрясений, которые произошли в этот период.

Из оставшихся десяти землетрясений — три реализовались по линии проекции лунного апогея, два — по линии проекции Нептуна, еще четыре — по линиям проекций узлов Нептуна, и одно — на линии афелия-перигелия Нептуна. Не было ни одного сейсмического толчка магнитудой 5.0 и более, не связанного с описанной констелляцией.

Этот пример объясняет, каким образом одна или несколько планет, в данном случае — Луна, Уран и Нептун, могут в течение одного и того же короткого временного промежутка вызывать землетрясения в разных регионах земного шара.

Подобная реализация сейсмического ответа на накопление энергии, которая происходит по линиям проекций планет и элементов их орбит, является характерным способом разрядки сейсмических очагов, по мере движения Луны и образования жестких планетарных взаимоотношений между ней и медленно движущимися планетами.

10 июня 2019 г, за неделю до приведенного выше примера, Луна находилась в первой четверти, и в жестких взаимоотношениях (квадрат, 90 градусов) по отношению к Солнцу, Нептуну и Урану. В этот день в мире было
зарегистрировано 21 землетрясение с магнитудой 4.5 и более, они также реализовались по определенным линиям планетарных проекций.

Через неделю после полнолуния, 24.06.2019 г. Луна достигла точного соединения с Нептуном. Первое же землетрясение в Индонезии в 01:05:28 GMT являлось резонансным и вызвало серию афтершоков.

Таблица 16. Данные основного резонансного землетрясения и афтершоков, которые произошли в Индонезии 24.06. 2019 г

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.06.2019</td>
<td>1:05:28</td>
<td>-2,86</td>
<td>138,49</td>
<td>21,99</td>
<td>6,10</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>1:22:46</td>
<td>-2,66</td>
<td>138,59</td>
<td>10,00</td>
<td>5,00</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>1:28:37</td>
<td>-2,71</td>
<td>138,50</td>
<td>10,00</td>
<td>5,30</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>1:45:42</td>
<td>-2,69</td>
<td>138,59</td>
<td>10,00</td>
<td>4,70</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>2:03:11</td>
<td>-2,67</td>
<td>138,68</td>
<td>10,00</td>
<td>4,70</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>2:26:54</td>
<td>-2,71</td>
<td>138,54</td>
<td>10,00</td>
<td>4,70</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>2:43:54</td>
<td>-2,68</td>
<td>138,55</td>
<td>10,00</td>
<td>5,30</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>2:48:06</td>
<td>-2,66</td>
<td>138,49</td>
<td>10,00</td>
<td>5,10</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>4:47:06</td>
<td>-2,65</td>
<td>138,49</td>
<td>10,00</td>
<td>5,60</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>5:15:49</td>
<td>-2,67</td>
<td>138,44</td>
<td>10,00</td>
<td>5,30</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>6:27:11</td>
<td>-2,77</td>
<td>138,61</td>
<td>10,00</td>
<td>4,60</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>7:19:45</td>
<td>-2,71</td>
<td>138,56</td>
<td>10,00</td>
<td>5,00</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>9:56:47</td>
<td>-2,70</td>
<td>138,41</td>
<td>10,00</td>
<td>4,80</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>10:17:35</td>
<td>-2,68</td>
<td>138,54</td>
<td>10,00</td>
<td>4,70</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>16:53:19</td>
<td>-2,69</td>
<td>138,47</td>
<td>10,00</td>
<td>5,70</td>
</tr>
<tr>
<td>24.06.2019</td>
<td>17:35:13</td>
<td>-2,76</td>
<td>138,37</td>
<td>10,00</td>
<td>5,30</td>
</tr>
</tbody>
</table>

Непосредственным катализатором этого землетрясения являлась Луна. Достигнув точного соединения с Нептуном, она определила дату резонансного землетрясения, здесь идет речь о годовой динамике планет. Время землетрясения определено суточной динамикой планет. К моменту землетрясения на десценденте – лунный апогей, один из кеплеровских элементов лунной орбиты.
Второй сейсмический очаг (рисунок 40) реализовался по линии проекции лунного апогея, на 10 градусов западнее первого. Основное землетрясение с M 7.3 произошло 24.06.2019 в 02:53:40. Дата его определяется тем же точным соединением Нептуна и Луны. Суточное движение планет обусловило время землетрясения: в момент землетрясения на десценденте – соединение Нептуна и Луны, а Юпитер – находится в нижней кульминации.
Рисунок 40. Линии проекций Луны, лунного апогея, Нептуна на земную поверхность. Второе резонансное землетрясение – также произошло в Индонезии, примерно на 10 градусов западнее первого. Место реализации сейсмического ответа определено проекцией на Землю лунного апогея.

Так как подобное планетарное взаимодействие и воздействие Нептуна и Урана на сейсмические процессы является еще не исследованной областью, в прогноз эти землетрясения попасть не могли, но будут учтены в последующих прогнозах на 2020 г. и далее.

1.12.4. Реализация прогноза по региону Калифорнии в сейсмическом цикле июля 2019 г.
Юпитер проецировался на регион Калифорнии с начала 2019 г., достиг в своем движении проекции на регион землетрясения в начале апреля 2019 г., после чего стал ретроградным.

Сатурн проецировался на регион Калифорнии с октября 2016 г. – до конца 2017 г., за этот период он трижды прошел непосредственно над регионом будущего землетрясения в директном и ретроградном движении.

К моменту землетрясения Сатурн в ретроградном движении и в точном соединении с нисходящим лунным узлом. Ретроградные Юпитер и Нептун в жестком взаимоотношении (квадрате).

02.07.2019 г. было полное солнечное затмение в Близнецах, знаке, противолежащем Стрельцу, Солнце при этом в точном соединении с восходящим узлом Юпитера, Луна за день до новолуния выравнивалась на регион землетрясения. Ретроградный Сатурн – в точном соединении с нисходящим лунным узлом.

В течение двух дней после новолуния Солнце движется к соединению с восходящим лунным узлом, достигая его в пределах орб 5 гр. 04.07.2019, ко времени начала форшоков, при этом оно выравнивается с Сатурном.


Второй форшок М 6.4 произошел через полчаса, 04.07.2019 в 17:33:49, координаты его 35°42'18"N и 117°30'22"W, при этом к десценденту подходит Нептун. После второго форшока сейсмический очаг начал активно разряжаться, до основного землетрясения произошло 230 землетрясений М от 2.5.

Основное землетрясение М 7.1 произошло 06.07.2019 г. в 03:19:53 GMT, координаты его 35°46'12"N и 117°35'56"W, глубина гипоцентра 8 км, интенсивность землетрясения 10.49. Соединение Солнца и восходящего лунного узла становится все более точным, и к моменту землетрясения это соединение находится точно на десценденте, на асценденте – точное
соединение Сатурна и нисходящего лунного узла, а Уран находится в нижней кульминации.

Таким образом, Юпитер и Сатурн наполнили кластер сейсмических резонаторов энергией низких частот, а Солнце и Луна – явились катализаторами квазирезонансного землетрясения в регионе Калифорнии.

Рисунок 41. Форшок М 6.4 и основное землетрясение М 7.1 произошли согласно графику-прогнозу по региону Калифорнии, на вершине сейсмического цикла и восходящих отрезках высокочастотных пиков.

1.12.5. Динамическое наблюдение за распределением актуальных сейсмогенных зон, обусловленных движением Луны

По сути дела, говоря о гравитационном взаимодействии Земли и планет Солнечной системы, мы подразумеваем барицентр (центр масс системы Земля-Луна), поэтому гравитационное поле изменяется (возмущается) как по долготам, так и по широтам, в зависимости от актуальной долготы и склонения Луны, и происходит это довольно быстро, так как быстро движется сама Луна. Луна определяет распределение землетрясений по поверхности Земли, она определяет динамику актуальных сейсмогенных зон. Ниже приведено наблюдение за
реализацией крупнейших землетрясений с М 7.0 и более, которые произошли в 2019 году.

Таблица 17. Данные землетрясений М 7.0 и более в 2019 г.

<table>
<thead>
<tr>
<th>Data</th>
<th>Time</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.05.2019</td>
<td>12:58:25</td>
<td>-4,05</td>
<td>152,60</td>
<td>10,00</td>
<td>7,60</td>
</tr>
<tr>
<td>26.05.2019</td>
<td>7:41:15</td>
<td>-5,81</td>
<td>-75,27</td>
<td>122,57</td>
<td>8,00</td>
</tr>
<tr>
<td>15.06.2019</td>
<td>22:55:04</td>
<td>-30,64</td>
<td>-178,10</td>
<td>46,00</td>
<td>7,30</td>
</tr>
</tbody>
</table>

Рисунок 42. Землетрясение М 7.6 произошло 14.05.2019. в 12:58:25 GMT, его координаты: 04.05S; 152.60E.

Сейсмический толчок произошел по линии проекции Луны, которая выровнена с Нептуном: в момент землетрясения на асценденте – нисходящий узел Нептуна, на десценденте – его восходящий узел, в верхней кульминации – афелий Нептуна, в нижней кульминации – его перигелий.
Рисунок 43. Землетрясение М 8.0 произошло 26.05.2019. в 07:41:15 GMT, его координаты: 05.81S;75.27W.

Луна в соединении со своим апогеем, в момент землетрясения: в верхней кульминации – ретроградный Сатурн с нисходящим лунным узлом, в нижней кульминации – восходящий лунный узел и восходящий узел Сатурна.

Следующее землетрясение М 7.3 (рисунок 44) произошло 15.06.2019, во время июньского полнолуния, в 22:55:04 GMT, его координаты: 30.64S;178.10W. Землетрясение реализовалось точно на линии проекции Урана, в момент землетрясения на десценденте – лунный апогей, в нижней кульминации – Луна и нисходящий узел Урана, в верхней кульминации – его восходящий узел.
Рисунок 44. Землетрясение М 7.3 было 15.06.2019 в 22:55:04 GMT, его координаты: 30.64S;178.10W.

Рисунок 45. Землетрясение М 7.2 произошло 14.07.2019 в 09:10:51 GMT, его координаты: 00.59S;128.03E.
Землетрясение произошло по линии проекции лунного апогея, в момент землетрясения на асценденте – ретроградный Сатурн, нисходящий лунный узел и нисходящий узел Сатурна, на десценденте – Солнце в соединении с восходящим лунным узлом и восходящим узлом Сатурна.

Как видим, землетрясения – не являются случайными, они носят строго детерминированный характер во времени и пространстве.

С точки зрения обработки информации, нет разницы, исследуются сейсмические события или экономические, такие, как движение на фондовых и валютных рынках (например, динамика экономических индексов, таких, как Dow Jones), социальные, климатические и т.д. Эта методика является универсальной и подходит для прогнозирования любых повторяющихся событий. Ограничением может быть только полнота и качество исследуемой статистической базы.

Результаты этой работы свидетельствуют о том, что землетрясения происходят не случайным образом, они подчинены гравитационному взаимодействию Земли с другими небесными телами Солнечной системы, каждое из которых вносит свой вклад в сейсмогенез нашей планеты, как это доказывается проведенными исследованиями в Моделях №№ 1-4 на основе программного инструментария АСК-анализа – универсальной автоматизированной системы искусственного интеллекта «Эйдос».

Результаты этого исследования дают основания для возможности прогнозирования землетрясений, как в мире, так и в отдельно взятых регионах. Эффективность прогнозов будет зависеть не только от выбранной методики, но и от длительности, полноты и точности инструментальных наблюдений в сейсмологии, так как прогнозирование строится на основе статистических баз землетрясений.

Поскольку наши знания о сейсмогенезе и механизме реализации землетрясений никогда не станут исчерпывающими, неизбежен процесс постоянного «обучения» информационных программ, и в перспективе возможно прогнозирование не только даты, но и времени отдельных сейсмособытий.
Литература к главе I

1. Каталог землетрясений: https://earthquake.usgs.gov/earthquakes/search/
4. Авсюк Ю. Н. Исследование приливной эволюции системы Земля–Луна и ее проявления в геодинамике. Институт физики Земли РАН, Москва.
9. Ребецкий Ю. Л. Современное состояние теорий прогноза землетрясений. Результаты оценки природных напряжений и новая модель очага землетрясений, Институт физики Земли им. О. Ю. Шмидта РАН.
14. Луценко Е. В., Трунев А. П. /«Эйдос-астра» – интеллектуальная система научных исследований влияния космической среды на поведение...


20. Трунев А. П. , Луценко Е. В. / Семантические информационные модели глобальной сейсмической активности при смещении географического и магнитного полюса // Политематический сетевой электронный научный журнал Кубанского государственного аграрного


26. Чередниченко Н.А., Луценко Е.В., Трунев А.П. / Моделирование смещения полюса Земли и алгоритм прогнозирования его динамики с


33. Луценко Е.В., Универсальная автоматизированная система распознавания образов "ЭЙДОС". Свидетельство РосАПО №940217. Заяв. № 940103. Опубл. 11.05.94. – Режим доступа: http://lc.kubagro.ru/aidos/1994000217.jpg, 3,125 у.п.л.


40. Луценко Е.В. Метод когнитивной кластеризации или кластеризация на основе знаний (кластеризация в системно-когнитивном

ГЛАВА II. СЕЙСМИЧЕСКИЕ МОДЕЛИ

2.1. Введение

Одним из первых теоретиков сейсмологии был Иммануил Кант, который после знаменитого Лиссабонского землетрясения, произошедшего 1 ноября 1755 года, выдвинул теорию об определяющем влиянии приливных сил Солнца и Луны в формировании землетрясений. Идея о влиянии приливных сил на тектонические процессы и землетрясения развивалась многими авторами, особенно, в последнее время в связи с космическими исследованиями сейсмической активности на других планетах и спутниках планет. В наших работах [1-8] и других было показано, что сейсмическая энергия Земли связана с изменением гравитационного потенциала Солнечной системы, что полностью подтверждает теорию Канта.

Однако современная теория тектонических процессов основывается на других гипотезах происхождения землетрясений. Рассмотрим карту распределения 32162 сейсмических событий с магнитудой 5 и более на поверхности Земли, произошедших за 20 лет в период с 1 января 1999 г по 1 января 2019 г. – рис.1. На этой карте события обозначены кружками разной величины и цвета в зависимости от магнитуды.

Как следует из приведенных данных на рис. 1 сейсмические события распределяются далеко не случайно, а концентрируются вокруг специфических линий, которые, согласно современным представлениям, совпадают с границами литосферных плит. Предполагается, что относительное движение литосферных плит является основным механизмом формирования зон упругопластических напряжений, которые при внезапной разгрузке производят сейсмические волны.
Движение литосферных плит обусловлено действием многочисленных сил, включая приливное воздействие. Считается, что приливные силы являются второстепенными, а основной движущей силой является конвекция в жидком слое мантии, вызванная большой разницей температуры в центре планеты и на ее поверхности. Заметим, что конвекцию мантийного вещества реально наблюдать очень сложно, тогда океанические приливы легко наблюдаемы. Тем не менее, тектоническая теория в большой степени опирается на гипотезу конвекции, хотя предполагается, например, что на спутнике Юпитера Ио, вулканическая деятельность вызвана, главным образом, приливным воздействием.

Физически конвекция обусловлена не только разностью температуры, но и гравитацией Земли. Поскольку, согласно общей теории относительности, земная гравитация неотделима от гравитации Солнечной системы, гравитации нашей Галактики и гравитации Вселенной, то и конвекция в мантии возникает в результате совокупного влияния небесных тел и Земли. Мы, таким образом, будем придерживаться гипотезы о всеобщей связи явлений и событий в четырехмерном пространстве-времени.
При таком подходе обсуждаемая в первой главе теория резонансного сейсмогенеза получает свое объяснение. Мы рассматриваем систему Земли в ее ближайшем космическом окружении. Процессы, происходящие в недрах Земли, скрыты от наблюдения, поэтому представляют собой содержимое черного ящика (в кибернетическом смысле). Входные параметры модели это известные элементы орбит небесных тел. Кроме того, мы используем отображение небесной сфера на земную поверхность. Этот эвристический прием помогает локализовать потенциальные возмущения и привязать их к координатам на поверхности Земли.

Система искусственного интеллекта [1-8] позволяет определить резонансный отклик в форме сейсмических событий на периодическое возмущение гравитационного поля Земли приливным воздействием небесных тел. Механизм возникновения этих резонансов до конца не ясен. Поэтому мы используем модель черного ящика. Однако мы все же можем дать последовательную интерпретацию довольно точным предсказаниям, полученным на основе этой модели, используя современную физическую теорию геометрической турбулентности [9], теорию гидродинамической турбулентности [10], и теорию ударно-волновых процессов в многофазных средах [11].

Мы предполагаем, что существует двухсторонний механизм переноса информации (энтропии) и энергии с поверхности Земли в слой мантии и обратно. При этом слабые возмущения усиливаются, создавая предпосылки для возникновения сейсмических событий. Ключевую роль в этом механизме играет конвекция, а тригером является приливное воздействие небесных тел. Таким образом, мы имеем дело с процессами, происходящими на подогреваемой снизу поверхности, которые очень чувствительны к малым возмущениям.

Глядя на карту распределения сейсмических событий на рис.1 трудно предположить, что в последовательности этих событий есть закономерность. Но если посмотреть на статистику сейсмических событий за 9 месяцев 2018 (с апреля по декабрь) – рис. 2, то можно заметить некоторые закономерности. Для повышения числа событий мы понизили магнитуду до 4.
Отсутствующие на рис. 1 события представлены кружками синего цвета.

Мы видим, что, во-первых, ежемесячные события локализованы все на тех же границах литосферных плит; во-вторых, события происходят в определенной последовательности, которую можно связать с движением проекций элементов орбит небесных тел по поверхности Земли. Вместе эти два факта позволяют осуществить успешный прогноз землетрясений [8].

Рис.2 Ежемесячная динамика сейсмических событий с магнитудой 4 и более с апреля по декабрь 2018 г.

Сейсмические события характеризуются не только магнитудой, но и глубиной. На рис. 3 представлено 3D распределение сейсмических событий с магнитудой 4 и более произошедших в штате Калифорния в период с 1 января 1969 г по 1 января 2019 г. Основные события происходят на средней глубине 7.46 км со стандартным отклонением 6.34 км. Из 1498 событий лишь 38 произошли на глубине свыше 20 км, 9 событий произошли на глубине свыше 30 км, глубина четырех событий превосходит 50 км, одно событие произошло на глубине 99 км. Таким образом, сейсмический процесс в этом регионе локализован в узком поверхностном слое толщиной не более 100 км, а реально толщину этого слоя можно взять, например, 30 км.
В настоящее время прогноз с использованием резонансной модели касается в основном определения географических координат событий с оценкой их магнитуды и глубины. Время наступления события определяется с точностью до суток. Это обусловлено выбранной моделью, в которой большую роль играют проекции элементов орбит небесных тел на земную поверхность (вычисляются ежесуточно). Разумеется, что можно при наличии данных определять время, например, с точностью до часа. Но это, видимо, дело далекого будущего, когда будут накоплены достаточно большие базы данных, необходимые для тренировки модели.

Рис. 3. Распределение сейсмических событий с магнитудой 4 и более произошедших в штате Калифорния в 1969-2019 гг. по глубине залегания (масштаб 1:10км).

В резонансной модели сейсмического процесса, описанной в первой главе, предполагается, что проекции элементов орбит небесных тел отображают истинные силы, действующие в системе. В этой связи заметим, что процессы переноса в системе такого масштаба как земля, описываются нелинейными уравнениями параболического типа:

\[
\frac{\partial u_i}{\partial t} - \nu \nabla^2 u_i = F(u_1, u_2, \ldots, u_N, t, x, y, z), \quad i = 1, 2, \ldots, N. \tag{A}
\]

Часть уравнений (A) определена в мантии, в большой по объему области, от твердого ядра и до коры, толщиной не менее 5000 км. Другая часть уравнений определена в коре, в области толщиной около 100 км, где в основном реализуются сейсмические события. Большое различие масштабов позволяет упростить задачу, рассматривая кору как границу области
трехмерного течения. Разбиение коры на подобласти осуществляется по границам стыков литосферных плит. В свою очередь, в качестве этих границ удобно будет принять линии концентрации сейсмических событий, показанные на рис.1. На этих границах определена третья часть уравнений (A). Мы, таким образом, имеем систему параболических уравнений связанных между собой на границах.

2.2. Физические модели сейсмических событий

2.2.1. Конвекция в мантии

Рассмотрим систему уравнений, описывающую неизотермическое течение несжимаемого флюида с учетом сил плавучести и переноса инертной примеси, имеем [10]

\[ \nabla \cdot \mathbf{u} = 0 \]

\[ \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{\nabla P}{\rho_0} = \nu \nabla^2 \mathbf{u} + \frac{g}{\rho_0} (\rho - \rho_0) \]

\[ \frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla) T = \frac{\nu}{\Pr} \nabla^2 T \]

\[ \frac{\partial \phi}{\partial t} + (\mathbf{u} \cdot \nabla) \phi = \frac{\nu}{\Sc} \nabla^2 \phi \]

Здесь обозначено: \( \rho \) - плотность воздуха; \( \mathbf{u} = (u, v, w) \) - вектор скорости потока; \( \nu \) - кинематическая вязкость; \( P \) - давление за вычетом гидростатического давления; \( g \) - вектор ускорения свободного падения; \( \rho_0 \) - равновесная плотность; \( T \) - температура, \( \Pr \) - число Прандтля; \( \phi \) массовая концентрация примеси; \( \Sc = \nu / D \) - число Шмидта; \( D \) - коэффициент молекулярной диффузии. Гидростатическое уравнение и стандартное приближение Буссеныка для возмущений плотности заданы в виде

\[ \nabla p_0 = \mathbf{g} \rho_0 (p_0, T_0) \quad \rho - \rho_0 = -\rho_0 \beta (T - T_0) \quad \text{при} \beta = \frac{1}{T} \]

Здесь \( \beta = -\rho^{-1} (\partial \rho / \partial T) \rho \) - коэффициент расширения, \( \beta = 1/T \) для идеального газа.

Определим систему декартовых координат таким образом, что бы ось \( Z \) была направлена против направления вектора ускорения свободного падения. Рельеф обтекаемой поверхности описывается уравнением \( z = r(x, y) \) - рис. 4.
Границные условия для параметров течения зададим на обтекаемой поверхности и на границе пограничного слоя следующим образом:

\[ z = r(x, y): \quad u = 0, \quad T = T_g, \quad \phi = \phi_g \quad (3) \]

\[ z = H: \quad u = U_0(1,0), \quad T = T_0, \quad \phi = \phi_0. \]

Здесь \( T_g \) - температура подстилающей поверхности, \( \phi_g \) - концентрация примеси на поверхности, \( H \) - высота пограничного слоя, \( U_0 \) - скорость течения на высоте \( z = H \), \( T_0, \phi_0 \) - температура и концентрация примеси на высоте \( z = H \) соответственно.

По координатам \( x, y \) зададим периодические граничные условия. Считаем, что в начальный момент скорость течения, температура и концентрация примеси описываются линейными функциями, имеем

\[ t = 0: \quad u = U_0 z / H, \quad T = T_g + (T_0 - T_g) z / H, \quad \phi = \phi_g + (\phi_0 - \phi_g) z / H \quad (4) \]

Приближенные решения задачи (1)-(4) для различных турбулентных течений были получены в [10]. Практически при любой функции распределения шероховатости \( z = r(x, y) \) течение довольно быстро переходит в турбулентный режим с установлением логарифмического профиля скорости, температуры и концентрации примеси – рис.5.
Отметим, что результаты, приведенные на рис. 5, получены путем численного интегрирования системы уравнений (7) с граничными условиями (3) и начальными данными (4). Из приведенных результатов следует, что линейный профиль (4) за короткое время эволюционирует в логарифмический профиль.

Этот факт, установленный во многих экспериментальных исследованиях, показывает, что природа изобрела наиболее экономичный способ движения в форме логарифмического профиля. Однако если логарифмический профиль подставить во второе уравнение (1), то можно убедиться, что это уравнение не выполняется. Такой результат означает, что в природе существуют силы, которые поддерживают логарифмический профиль, но которые не нашли отражения в уравнениях (1). Обычно происхождение этих сил приписывают так называемым напряжениям Рейнольдса, обусловленным турбулентной вязкостью или диффузиеей.

Обратимся к методу решения проблемы турбулентной диффузии, который был предложен в [10]. Основная идея заключается во введении в уравнения (1) случайных параметров. Например, в пограничном слое можно представить вектор скорости течения \( \mathbf{u} = (u, v, w) \) в форме \( \mathbf{u} = \mathbf{u}(x, y, z/h(x, y, t), t) \), где
$h = h(x, y, t)$ - это поверхность, описывающая динамическую шероховатость [10].

Предполагается, что такую поверхность можно характеризовать случайными параметрами $h, h, h, h$, которые имеют смысл высоты, скорости движения элемента и наклонов поверхности. Обозначим функцию распределения этих параметров $f_s = f_s(h, h, h, h)$.

Предположим, что \( \eta = z / h = \text{const} \) и рассмотрим достаточно представительную область течения объемом \( dV = L_x L_y dz \), где $L_x, L_y$ - типичные масштабы течения в направлениях $x$, $y$ соответственно — рис.1. Рассмотрим подобласть течения $dV_s$, которая принадлежит рассматриваемой области течения $dV$, и в которой случайные параметры $h, h, h, h$ изменяются в интервалах $(h; h + dh), (h; h + dh), (h; h + dh), (h; h + dh)$.

В общем случае подобласть $dV_s$ является многосвязной областью, объем которой задается уравнением $dV_s = dV/
u$,

$\nu = f_s(h, h, h, h) dh dh dh$.

Случайная амплитуда скорости может быть определена путем суммирования выражения $u = u(x, y, z/h, x, y, t)$ в объеме $dV_s$:

$$\bar{u}(\eta, t, h, h, h, h) = \lim_{\delta dV} \frac{1}{\delta V} \int u(x, y, t) dx dy dz$$

(5)

Здесь $\delta dV$ - произвольный объем, вложенный в $dV = L_x L_y dz$ и содержащий $dV_s$. Очевидно, что $\bar{u}(\eta, t, h, h, h, h)$ является случайной функцией, поскольку зависит от случайных параметров. Уравнения, описывающие динамику $\bar{u} = \bar{u}(\eta, t, h, h, h, h)$, следуют из уравнений (1) и (5), а их вывод дан в [10].

Статистический момент порядка $m$ случайной функции $\bar{u}(\eta, t, h, h, h, h)$ определяется следующим образом

$$\bar{u}^m(z, t) = \int \bar{u}^m(\eta, t, h, h, h, h) f_s(h, h, h, h) dh dh dh dh$$

(6)

В результате применения указанных преобразований система уравнений (1) принимает вид [10]:

$$\frac{\partial \bar{u}}{\partial \eta} - \eta \frac{\partial \Phi}{\partial \eta} = 0$$

$$\frac{\partial \bar{u}}{\partial t} + \bar{W} \frac{\partial \bar{u}}{\partial \eta} + \nu \frac{\partial}{\partial \eta} \left( 1 + n^2 \eta^2 \right) \frac{\partial \bar{u}}{\partial \eta} =$$

$$- \frac{\nu n^2 \eta \partial \bar{u}}{h^2} + \frac{\nu \eta \partial \Phi}{h^2} + \frac{g}{\rho_0} (\bar{\rho} - \rho_0)$$

(7)

116
\[
\frac{\partial \tilde{\theta}}{\partial t} + \frac{\partial \tilde{W}}{\partial h} \frac{\partial \tilde{\theta}}{\partial \eta} = \frac{\nu}{Pr h^2} \frac{\partial}{\partial \eta} (1 + n^2 \eta^2) \frac{\partial \tilde{\theta}}{\partial \eta} - \frac{v n^2 \eta \partial \tilde{\theta}}{Pr h^2 \partial \eta}
\]
\[
\frac{\partial \tilde{\phi}}{\partial t} + \frac{\partial \tilde{W}}{\partial h} \frac{\partial \tilde{\phi}}{\partial \eta} = \frac{\nu}{Sch^2 \eta} \frac{\partial}{\partial \eta} (1 + n^2 \eta^2) \frac{\partial \tilde{\phi}}{\partial \eta} - \frac{v n^2 \eta \partial \tilde{\phi}}{Sch^2 \partial \eta}
\]

Здесь \( \tilde{W} = \tilde{\omega} - \eta \Phi \), \( \Phi = h_i + h, \tilde{\omega} + h, \tilde{\varphi} = \tilde{p} + \theta, n = \sqrt{h_i^2 + h_s^2} \), \( N = (-\eta h_i, -\eta h_s, 1) \).

Отметим, что фигурирующая в уравнениях (7) турбулентная вязкость пропорциональна квадрату расстояния до шероховатой стенки. Система уравнений (7) имеет установившееся решение в форме логарифмического профиля, как для скорости – рис.5, так и для концентрации примеси и температуры.

### 2.2.2. Модель турбулентной среды

Методы прямого численного моделирования турбулентных течений (DNS) опираются непосредственно на систему уравнений (1). При этом для вычисления профиля скорости часто используется приближенный метод Галеркина или метод моментов, а также метод Ритца и другие приближенные методы. В этом смысле использованное нами разложение (4)-(5) можно рассматривать как один из таких приближенных методов.

Как известно, при нахождении решения задачи (1)-(4) по методу Галеркина нельзя гарантировать существование хотя бы одного решения, а если приближенное решение существует, то нельзя гарантировать, что оно сходится к точному решению. Отметим, что даже при наличии приближенного метода решения прямое численное моделирование турбулентности не всегда приводит к желаемому результату, так как система уравнений (1), сформулированная для несжимаемых течений, содержит в себе противоречие. Действительно, при выводе этой системы уравнений предполагается, что плотность среды не меняется, а это, в свою очередь, означает малость числа Маха потока

\[
M = U_0 / c_s << 1
\]

Здесь \( c_s \) – скорость звука. Однако, на некоторых решениях условие (8) может нарушаться, что приводит к необходимости учета сжимаемости среды. При этом желательно, чтобы тип системы уравнений (1) не изменился при всех ее модификациях. Известно множество способов регуляризации системы уравнений (1), как по давлению, так и по градиенту скорости.
Рассмотрим следующий подход к учету сжимаемости без изменения типа системы уравнений (1). Запишем уравнение неразрывности для сжимаемой среды в форме

\[ \nabla \cdot \mathbf{u} = -\rho^{-1} \frac{dP}{dt} = -\frac{1}{\rho c_s^2} \frac{dP}{dt} \]  

(9)

Оценка правой части уравнения (9) имеет порядок \( M^2 \omega_0 \), где \( \omega_0 \) — характерная частота. При выполнении условия (8) и для умеренных частот правая часть можно устремить к нулю, в результате приходим к первому уравнению (1). Однако для больших частот колебаний параметров потока, характерных для турбулентных режимов, условия (8) может оказаться недостаточно для того, что бы положить нулю правую часть уравнения (9). Область таких частот определяется неравенством \( M^2 \omega_0 \geq 1 \).

Следовательно, турбулентная среда не может считаться несжимаемой даже при малых числах Маха. Для такой среды необходимо сформулировать такое уравнение состояния, которое отражало бы связь параметров в турбулентном потоке. Рассмотрим функционал

\[ \tilde{P} = \frac{1}{t} \int_0^t P dt \]  

(10)

Функционал (10) обладает следующими свойствами

\[ \tilde{P} = \lim_{t \to 0} \frac{1}{t} \int_0^t P dt = P \]  

(11)

\[ \tilde{P} = \lim_{t \to \infty} \frac{1}{t} \int_0^t P dt = \langle P \rangle \]

Таким образом, используя функционал (10) можно описать мгновенное и среднее значение давления в турбулентном потоке. Вычисляя производную от обеих частей выражения (10), находим

\[ \frac{d\tilde{P}}{dt} = \frac{P - \tilde{P}}{t} \]  

(12)

Положим в правой части (12) \( t = 1/\omega_0 \), а соответствующий этому времени функционал (10) обозначим \( P_0 \). Теперь мы можем сформулировать необходимый критерий регуляризации в виде

\[ \frac{dP}{dt} = \alpha \omega_0 (P - P_0) \]  

(13)
Здесь $\alpha, \omega_0, P_0$— некоторые параметры, которые могут быть определены для потока в целом. В результате применения (13) к уравнению (10), находим

$$\nabla \mathbf{u} = -\alpha \omega_0 \frac{P - P_0}{\rho c_s^2} = -\frac{P - P_0}{\mu T} \mu$$  \hspace{1cm} (14)$$

Где обозначено $\mu_T = \rho c_s^2 / \alpha \omega_0$ - параметр, характеризующий вязкость в турбулентном потоке. Используя уравнение (14), можно переформулировать модель Навье-Стокса (1) в виде, удобном для численного интегрирования. Для этого запишем второе уравнение (1) в общей форме

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{\nabla P}{\rho_0} = \nu \nabla^2 \mathbf{u} + \mathbf{f} \hspace{1cm} (15)$$

Вычислим дивергенцию от обеих частей уравнения (15), тогда, используя (14) с постоянными параметрами $\mu_T, P_0$ получим

$$\frac{\partial P}{\partial t} + (\mathbf{u} \cdot \nabla) P = \nu_T \nabla^2 P - \mu_T (\nabla \mathbf{f}) - \mu_T \frac{\partial u_i}{\partial x_k} \frac{\partial u_i}{\partial x_k} \hspace{1cm} (16)$$

Здесь по повторяющимся индексам $i, k = 1, 2, 3$ осуществляется суммирование, $\nu_T = (\mu_T + \mu) / \rho_0$ - параметр турбулентной диффузии поля давления, $\mu = \rho_0 \nu$ - динамическая вязкость. Наконец, мы можем записать систему уравнений (1) в форме системы уравнений параболического типа:

$$\frac{\partial u_i}{\partial t} + (\mathbf{u} \cdot \nabla) u_i + \frac{1}{\rho_0} \frac{\partial P}{\partial x_i} = \nu \nabla^2 u_i + f_i, \hspace{1cm} i = 1, 2, 3$$

$$\frac{\partial P}{\partial t} + (\mathbf{u} \cdot \nabla) P = \nu_T \nabla^2 P - \mu_T (\nabla \mathbf{f}) - \mu_T \frac{\partial u_i}{\partial x_k} \frac{\partial u_i}{\partial x_k} \hspace{1cm} (17)$$

$$\frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla) T = \frac{\nu_T}{\text{Pr}} \nabla^2 T$$

$$\frac{\partial \phi}{\partial t} + (\mathbf{u} \cdot \nabla) \phi = \frac{\nu_T}{\text{Sc}} \nabla^2 \phi$$

Отметим, что параметры турбулентной диффузии и вязкости возникают в системе (17) в силу уравнения (14). Параметр турбулентной диффузии в модели (17) имеет ясный физический смысл, как и происхождение напряжений Рейнольдса. Система уравнений может быть использована для моделирования неуставновившихся турбулентных течений.

Действительно, в этом случае уравнение неразрывности уже не является препятствием на пути получения решений в форме
логарифмического профиля. Необходимое равновесие сил достигается в системе (17) за счет трехкомпонентного поля скорости и давления.

Другой вариант преобразованной системы уравнений Навье-Стокса может быть получен путем прямой подстановки выражения давления (14) в уравнение (15), имеем

\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla P_0 = \nu \nabla^2 \mathbf{u} + \frac{1}{\rho_0} \nabla (\mu_t (\nabla \mathbf{u})) + \mathbf{f}
\]  

(18)

Здесь параметр \( P_0 \) и параметр турбулентной вязкости \( \mu_t \) следует считать заданными функциями координат и времени.

2.2.3. Конвективные течения

В случае конвективных течений система уравнений (1) приводится к безразмерному виду с использованием разности температуры \( \Delta T = T_1 - T_0 \) (здесь \( T_1, T_0 \) - температура магмы и литосферной плиты соответственно), плотности \( \rho_0 \), характерной длины \( H \) и характерного времени \( t_0 = \Pr H^2 / \nu \). Тогда систему (1) можно представить в виде

\[
\nabla \cdot \mathbf{u} = 0
\]

\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla P = \Pr \nu^2 \mathbf{u} + \frac{g}{g} \text{Ra} \Pr T
\]

\[
\frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla) T = \nabla^2 T
\]

(19)

Здесь \( \text{Ra} = \Pr \frac{\beta g \Delta T H^3}{\nu^2} \) - число Релея. Заметим, что числа Прандтля и Релея составляют порядка \( \Pr \approx 10, \text{Ra} \approx 10^4 \div 10^8 \) для конвективных течений в мантии.

Рассмотрим задачу о конвективном течении в области с уступом – рис. 6. Такая задача возникает, например, при субдукции литосферных плит. В этом случае характерное число Релея, вычисленное по длине области, составляет \( \text{Ra} = 2 \cdot 10^7 \). Отметим, что течение теряет устойчивость и наступает турбулентный режим конвекции уже при \( \text{Ra} = 2.5 \cdot 10^7 \). Численное решение получено методом конечных элементов с использованием алгоритма [12].
На рис. 6 показано распределение приведенной температуры $\tilde{T} = (T - T_0)/\Delta T$ и модуля безразмерной скорости в области течения (вверху), а также линии тока (вижу). Из анализа приведенных данных можно сделать следующие выводы. Во-первых, течение ориентировано слева направо (со стороны плиты, которая погружается, в направлении плиты, которая наползает сверху). Следовательно, конвективное течение затягивает нижнюю плиту под верхнюю плиту. Во-вторых, за уступом возникает возвратное течение, которое тянет верхнюю плиту в сторону нижней плиты, что усиливает эффект погружения. Наконец, верхняя плита подвергается растяжению (из-за противоположного действия прямого и возвратного течения), поэтому в ней могут образоваться трещины. Отметим, что течение возникает только из-за разности температуры на верхней и на нижней границе области (смотрите рис. 6 вверху слева).

В реальном трехмерном течении наблюдается выгибание нижней плиты с образованием сляба, который плавится на конце [13] – рис. 7-9. В такой геометрии конвективное течение усложняется. Во-первых, там нет стационарной конvectionи. Течение может быть как слева направо, так и справа налево, поскольку направление течения периодически меняется со временем. На рис. 7 показаны линии тока (вверху), температура и модуль скорости (вижу) в зоне субдукции при прогревании магмы. Для этого теста характерное число Релея, вычисленное по длине области, составляет $Ra = 10^6$. В этом случае также наблюдается зона возвратного течения за уступом, которое затягивает нижнюю плиту под верхнюю плиту. В свою очередь, верхняя плита увлекается основным течением и наползает на нижнюю плиту.

Течение, показанное на рис. 7, существует ограниченное время, а затем распадается на две струи, одна из которых устремляется налево, а другая направо – рис. 8. При этом в зоне субдукции формируется вихревое течение, которое затягивает нижнюю плиту под верхнюю плиту. Обе плиты подвергаются растяжению, поэтому на них могут образоваться трещины. На
рис. 8 показаны линии тока (вверху), модуль скорости и температура (внизу).

Рис. 6. Конвекция за уступом: распределение температуры и модуля скорости (вверху); линии тока течения (внизу); число Релея  \( Ra = 2 \cdot 10^7 \).

Рис. 7. Конвекция в зоне субдукции в начальной стадии: линии тока течения (вверху); распределение температуры и модуля скорости (внизу); число Релея  \( Ra = 10^6 \).
Рис. 8. Конвекция в зоне субдукции в начальной стадии установления: линии тока течения (вверху); распределение температуры и модуля скорости (внизу); число Релея $Ra = 10^6$.

Дальнейшая эволюция течения приводит к образованию состояния, которое хотя и похоже на стационарное, но все же, медленно меняется – рис. 9. Сравнивая линии тока на рис. 7, 8 и 9 видим, что в процессе эволюции течение подстраивается под форму плиты, которая тоже меняет свою форму в результате плавления [13-14]. Отметим, что модуль скорости течения в зоне субдукции не превышает 90 – рис. 7, тогда как в течении за уступом модуль скорости превосходит 3000 – рис. 6, т.е. скорость отличается более чем в 30 раз. При этом число Релея отличается для этих двух вариантов в 20 раз. Такое различие в скорости обусловлено, в том числе, различием в граничных условиях для
скорости, которые заданы нулевыми на нижней границе на рис. 6 и ненулевыми (условие Неймана) для данных на рис. 7-12.

Рис. 9. Конвекция в зоне субдукции в заключительной стадии установления: линии тока течения (вверху); распределение температуры и модуля скорости (внизу); число Релея $Ra = 10^6$.

На рис. 10-12 показаны этапы формирования конвективного течения в зоне субдукции. В начальной стадии струя обтекает уступ справа налево - рис. 10. При этом за уступом формируется зона возвратного течения – рис. 7. В процессе развития вихревого течения часть вихря за изгибом плиты сносится вниз по потоку. В этот период магма прогрета частично, скорость течения относительно велика – смотрите распределение температуры и модуля скорости на рис. 7.
Рис. 10. Начальная стадия формирования течения в зоне субдукции.

Во второй стадии происходит формирование вихрей в начале и в конце зоны субдукции – рис. 11. Магма прогрета на всю толщину, скорость течения падает - смотрите распределение температуры и модуля скорости на рис. 8. В этот период происходит интенсивное плавление нижней плиты [13].

В последней стадии за изгибом плиты вновь формируется вихрь – рис. 12. Магма прогрета на всю толщину, скорость течения продолжает падать – рис. 9. Если сравнивать скорость по данным на рис. 7 и 9, то находим отличие в 2 раза. Падение скорости обусловлено тем, что вместо струй формируются вихри, которые заполняют всю область течения. Такое вихревое течение является отличительной особенностью тепловой конвекции. Если бы область течения была симметричной, тогда можно было бы наблюдать формирование конвективных ячеек. В отсутствии симметрии формируются вихри, которые заполняют всю область течения. Поскольку число Релея относительно велико, течение не устанавливается даже в последней стадии, что можно видеть, сравнивая данные в двух нижних рядах на рис. 12.
Все расчеты выполнены с использованием метода конечных элементов, соответствующий алгоритм и программа приведены в
Описанный в [12] алгоритм был протестирован на известных задачах конвекции и обтекания тел. Этот алгоритм позволяет моделировать нестационарные течения сжимаемой и несжимаемой вязкой жидкости с учетом переноса тепла и примеси в области со сложной конфигурацией границ в 2D и 3D. На рис. 13 показаны некоторые варианты областей использованные в расчетах тепловой конвекции: 1) течение в области с уступом; 2) течение в области субдукции; 3) течение в полости; 4) течение под шероховатой поверхностью. Отметим, что на первых двух рисунках 13 показано разбиение области на ячейки.

Рис. 13. Варианты 2D областей использованных в расчетах тепловой конвекции: 1) течение в области с уступом; 2) течение в области субдукции; 3) течение в полости; 4) течение под шероховатой поверхностью

2.2.4. Течение магмы в полости (кармане)

При конвективном течении магмы под полостью в литосферной плите возникает специфическое вихревое течение, зависящее от геометрии полости. Трехмерные нестационарные течения в кубоиде были рассмотрены в наших работах [15-16] и других. Было исследовано течение вязкой несжимаемой жидкости в ламинарном и турбулентном режимах, а также под влиянием сил электромагнитного происхождения. В указанных работах внешнее течение заменялось граничным условием на одной из граней полости. Ниже мы рассмотрим конвективное
течение в прямоугольной полости с учетом влияния примыкающих границ – рис. 13, 3). Здесь возможны варианты с остыванием магмы в полости и с ее нагреванием. Первый вариант неустойчив, так как при сильном охлаждении магмы должна происходить кристаллизация. Тем не менее, существует режим охлаждения, при котором температура в полости остается достаточно высокой – рис. 14.

Рис. 14. Начальная стадия охлаждения магмы в прямоугольной полости: вверху – линии тока; внизу – распределение температуры (слева) и модуля скорости (справа); число Релея $Ra = 1.25 \cdot 10^5$.

Однако в заключительной стадии температура в полости падает почти до нуля, т.е. температура магмы приближается к температуре окружающего полость твердого вещества – рис. 15. И в том, и в другом случае наблюдается вихревое движение в полости (рис.14-15). Отметим, что хотя температура в полости
падает, но скорость движения вещества в полости возрастает — рис. 16.

Рис. 15. Заключительная стадия охлаждения магмы в прямоугольной полости: вверху — линии тока; внизу — распределение температуры (слева) и модуля скорости (справа); число Релея $Ra = 1.25 \cdot 10^5$.

Это объясняется тем, что при охлаждении магмы формируется нестационарное течение, скорость которого возрастает по мере охлаждения — сравните данные на рис.14 и 15. На рис. 16 представлены профили скорости (верхний ряд) и температуры (нижний ряд) для конвективного течения в полости в различные моменты времени $t = 0, 4t_m, ..., 40t_m$ - кривые 1-11 соответственно (здесь $t_m = t_0 / 200$). В верхнем ряду слева показаны профили горизонтальной скорости в нижней части полости, в
которой полостное течение контактирует с внешним течением. В верхнем ряду в центре показаны профили горизонтальной скорости в средней части полости, а справа – аналогичные профили вертикальной скорости.

Рис. 16. Профили скорости (верхний ряд) и температуры (нижний ряд) для конвективного течения в полости в различные моменты времени $t = 0, 4t_m, 8t_m, ..., 40t_m$ - кривые 1-11 соответственно.

В нижнем ряду рис. 16 показаны профили температуры в горловине полости (слева), в средней ее части (в центре) и в верхней части на уровне 95% от высоты полости. Можно видеть, что скорость в полости растет со временем, а температура падает. Следовательно, тепловая конвекция в ламинарном режиме не может поддерживать температуру в полости, поэтому одинокая полость в литосферной плите со временем должна закрыться отвердевшей магмой. В этой связи возникает вопрос, как же поддерживается температура магмы в кармане вулкана?

Можно предположить, что полость открыта сверху, поэтому тепловой поток мал из-за низкой теплопроводности воздуха. В этом случае магма в полости может существовать гораздо дольше. На рис. 17-19 приведены данные расчетов тепловой конвекции в полости с теплоизолированной верхней стенкой (обозначения как на рис. 14-16).
Рис. 17. Начальная стадия охлаждения магмы в прямоугольной полости с теплоизолированной верхней стенкой: вверху – линии тока; внизу – распределение температуры (слева) и модуля скорости (справа); число Релея $Ra = 1.25 \cdot 10^5$.

Рис. 18. Заключительная стадия охлаждения магмы в прямоугольной полости с теплоизолированной верхней стенкой: вверху – линии тока; внизу – распределение температуры (слева) и модуля скорости (справа); число Релея $Ra = 1.25 \cdot 10^5$. 
Из приведенных на рис.17-19 данных следует, что в случае теплоизолированной верхней стенки температура в полости соответствует температуре в горловине. Со временем температура в центре полости падает и достигает предельного ненулевого значения около 0.16. Этого вполне достаточно, чтобы поддерживать магму в текучем состоянии.

Рис. 19. Профили скорости (верхний ряд) и температуры (нижний ряд) для конвективного течения в полости с теплоизолированной верхней стенкой в различные моменты времени $t = 0, 4t_m, 8t_m, ..., 40t_m$ - кривые 1-11 соответственно.

При увеличении числа Релея устойчивость процесса тепловой конvectionи со временем нарушается, после чего система внезапно переходит в турбулентное состояние. Время перехода зависит от числа Релея. Так для числа Релея $Ra = 1.875 \cdot 10^5$ это время составляет $t = 0.275t_0$, а для $Ra = 2.5 \cdot 10^5$ переход к турбулентности осуществляется при $t = 0.225t_0$.

### 2.2.5. Тепловая конвекция магмы под шероховатой поверхностью

При растяжении литосферной плиты на ее нижней поверхности могут образоваться трещины. Если магма в
начальный момент времени заполняла трещины, то со временем магма остывает и происходит закрытие трещин. На рис. 20-21 представлены данные расчетов конвективного течения магмы при наличии десяти трещин. В начальной стадии происходит удаление тепла из трещин – рис. 20, в результате чего магма в трещинах остывает. В заключительной стадии устанавливается равновесный профиль температуры и скорости во всех трещинах – рис. 21.

Рис. 20. Начальная стадия тепловой конвекции магмы под шероховатой поверхностью: вверху – линии тока; внизу – распределение температуры (слева) и модуля скорости (справа); число Релея $Ra = 1.728 \cdot 10^5$.

На рис. 22 показаны профили скорости (верхний ряд) и температуры (нижний ряд) во всех 10 щелях. В нижнем ряду рис. 22 показаны профили температуры в горловине полости (слева), в средней ее части (в центре) и в верхней части на уровне 95% от высоты полости. В верхнем ряду слева показаны профили горизонтальной скорости в нижней части, в которой полостное течение контактирует с внешним течением. В верхнем ряду в центре показаны профили горизонтальной скорости в средней
части щелей, а справа – аналогичные профили вертикальной скорости.

Рис. 21. Заключительная стадия тепловой конвекции магмы под шероховатой поверхностью: вверху – линии тока; внизу – распределение температуры (слева) и модуля скорости (справа); число Релея
\[ Ra = 1.728 \cdot 10^5. \]

Рис. 22. Профили скорости (верхний ряд) и температуры (нижний ряд) в щелях рассчитанные для конвективного течения под шероховатой стенкой
в различные моменты времени \( t = 0, 4t_m, 8t_m, ..., 40t_m \) - кривые 1-11 соответственно.

Отметим, что профили скорости во всех 10 щелях практически идентичны, тогда как профили температуры слегка варьируются, что особенно заметно при сравнении профиля в последней щели с другими. Скорость основного течения меняет знак в процесс установления — сравните линии тока на рис. 20 и 21.

### 2.2.6. Напряженное состояние литосферных плит

В последнее десятилетие интенсивно изучалось напряженное состояние земной коры, в результате чего была создана мировая карта напряжений WSM [17]. Вместе с данными о скорости движения плит и конвекции [18] это позволяет осуществить моделирование напряженного состояния отдельных литосферных плит в зоне субдукции [13, 19].

Рассмотрим тепловую конвекцию в зоне субдукции при остывании магмы — рис. 7-12. Используя данные по распределению скорости и давления можно вычислить силы, действующие на плиты. На рис. 23-24 представлены данные по эпюрам давления и силы трения на поверхности плит и сляба.

Рис. 23. Распределение давления в зоне течения (слева) и на поверхности плит и сляба (справа) при тепловой конвекции в области субдукции; число Релея \( Ra = 10^6 \).
Зная действующие силы можно определить деформацию плит и компоненты тензора напряжений с учетом силы тяжести, используя теорию упругости [19]. На рис. 25-26 представлены компоненты вектора деформаций и тензора напряжений соответственно, рассчитанные без учета движения плит. Как и следовало ожидать, в центре плиты прогибается под действием силы тяжести, тогда как не правом краю выпучивается под влиянием давления в зоне субдукции. Сияб прогибается и вытягивается вниз, а кривизна его растет. Компоненты тензора напряжений имеют максимальное значение в области примыкания сляба к плате, где, по общему мнению, реализуются сейсмические события. В расчетах использованы данные [19], в которых модуль Юнга и коэффициент Пуассона для коры принят как $E = 6 \cdot 10^{10}$ Па, $\nu = 0.25$. 

Рис. 24. Распределение силы трения на поверхности плит при тепловой конвекции в области субдукции; число Релея $Ra = 10^6$. 

136
Рис. 25. Компоненты вектора деформаций литосферных плит при тепловой конвекции в области субдукции; число Релея $Ra = 10^6$.

Рис. 26. Компоненты тензора напряжений литосферных плит нормированные на модуль Юнга при тепловой конвекции в области субдукции; число Релея $Ra = 10^6$.

При учете движения плит следует использовать вязкоупругую модель [19], в которой также учитывается изменение давления и силы трения в результате конвекции:
\[
\varepsilon_{xx} = \frac{\partial u}{\partial x}, \quad \varepsilon_{yy} = \frac{\partial v}{\partial y}, \quad \varepsilon_{xy} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}
\]

(20)

На рис. 27-28 показано изменение компонентов вектора деформации плит при их встречном движении.

Рис. 27. Изменение горизонтальной компоненты вектора деформаций при встречном движении плит в масштабе \( t_c = \mu_c / E = 1.66667 \cdot 10^{13} s \).

Следует заметить, что вязкость коры по данным [19] составляет \( \mu_c = 10^{24} \text{Pa} \cdot \text{s} \). Следовательно, характерное время процесса можно определить как \( t_c = \mu_c / E = 1.66667 \cdot 10^{13} s \), что составляет около 528146 лет. Изменение деформации плит на рис. 27-28 дано в этом масштабе. Из приведенных на рис. 27-28 данных следует, что при встречном движении плит происходит уменьшение прогиба плиты в зоне субдукции, а также сжатие в горизонтальном направлении, которое увеличивается со временем.

Предполагается, что такого рода сжатие или растяжение плит вызывает концентрацию напряжений в области пустот или уплотнений, что может быть причиной землетрясений. В этой связи заметим, что изменение деформации плиты происходит очень медленно, тогда как небесные тела движутся относительно быстро в масштабе \( t_c \).
Приведенные выше данные численных расчетов тепловой конвекции и напряженного состояния литосферных плит носят иллюстративный характер. Реальные модели конвекции в зоне субдукции отличаются большой сложностью и опираются на эмпирические данные [13]. Точность моделей не столь велика, чтобы можно было использовать их для оперативного прогноза землетрясений. Так, например, модель [13] описывает процессы в зоне субдукции в масштабе $t_c$. Ясно, что прогноз в масштабе нескольких дней, месяцев или лет практически неосуществим с использованием такого рода моделей. Поэтому мы используем модель черного ящика и методы распознавания событий по параметрам орбит небесных тел. Такого типа модели оказываются более эффективными и могут быть использованы в прогнозах сейсмических событий и климата [1-8, 20-22].

Тем не менее, модели механики сплошной среды широко используются для моделирования геофизических и геологических процессов. В частности, глубинные землетрясения, происходящие в Тихоокеанском регионе, в районе Курильских островов и Японии – рис. 29, очевидно связаны с процессами, происходящими в зоне субдукции.
Рис. 29. Распределение сейсмических событий с магнитудой 5 и более произошедших в районе Курильских островов и Японии в 1980-2019 гг. по глубине залегания.

В этом регионе распределение сейсмических событий по глубине залегания явно отличается от аналогичного распределения в штате Калифорния – рис. 3. Здесь мы видим наличие событий произошедших на большой глубине свыше 500 км. Средняя глубина составляет 63.9 км, а стандартное отклонение - 97.367 км. Очевидно, что для этого региона большое значение имеют процессы тепловой конвекции в магме, происходящие на большой глубине.
С точки зрения физики для описания каждого множества событий представленных на рис. 3 и 29 необходимо построить отдельную модель. Однако с точки зрения обсуждаемой теории резонансного сейсмогенеза основные причины сейсмических событий являются однотипными и распознаются в процессе формирования информационной модели явления.

2.3. Информационные модели сейсмических событий

2.3.1. Распознавание случайных событий в поле центральных сил

В работе [23] была сформулирована теорема, которая устанавливает зависимость функции распределения случайных событий, происходящих на земле от кинематических и динамических параметров нашей планеты при ее движении вокруг Солнца. Одним из следствий этой теоремы является то, что любые непрерывные или дискретные распределения событий по времени при их представлении в зависимости от координат небесных тел содержат когерентные колебания, обусловленные движением небесных тел.

Предполагается, что эти когерентные колебания могут быть использованы для распознавания событий любой природы, например, социальных или экономических категорий [7], а также природных явлений [1-8, 20-22].


Моделирование событий осуществлялось по параметру сходства, который является аналогом коэффициента корреляции в статистике. Была обнаружена зависимость параметра сходства от магнитуды, глубины очага и числа землетрясений, происходящих ежедневно на нашей планете, как в месячном, так и в 2-3 дневном прогнозе. В этой связи была предложена
гипотеза, что этот эффект обусловлен гравитацией небесных тел. Для проверки гипотезы было исследовано влияние 12 гравитационных комплексов на всю совокупность 65541 событий и выделены наиболее информативные астрономические признаки землетрясений.

2.3.2. Задача о распознавании категорий событий в поле центральных сил

Вообще говоря, каждому моменту времени можно сопоставить множество категорий событий, происходящих в данном месте на нашей (или иной) планете. События могут иметь детерминированную или случайную природу. По мнению авторов целесообразно считать, что в общем случае система детерминации любого события включает в различных соотношениях и детерминированную, и случайную компоненты. Чтобы установить характер (закономерность) последовательности событий и описать ее в виде функции, можно сопоставить ее с другой последовательностью или совокупностью последовательностей, которая рассматривается как аргумент этой функции. При этом если эти последовательности являются детерминированными, они могут играть роль времени, отличного от линейного времени Ньютона. Можно сформулировать задачу распознавания категорий событий, используя детерминированные последовательности. Частным случаем этой задачи является распознавания сейсмических событий по астрономическим данным положений небесных тел Солнечной системы [1-8].

Рассмотрим задачу распознавания категорий по астрономическим данным. Итак, имеется множество событий А, которому ставится в соответствие множество категорий С. Событием можно считать регистрацию землетрясения сейсмологической станцией, а категорией – его магнитуду, лежащую в определенном интервале и глубину гипофокуса. Каждое событие землетрясения характеризуется моментом времени и географическими координатами места его происхождения. По этим данным можно построить матрицу, содержащую координаты небесных тел, например углы долготы
и расстояния. Будем считать, что заданы частотные распределения $N_i$ – число событий, имеющих отношение к данной категории $C_i$.

Определим число случаев реализации данной категории, которое приходится на заданный интервал изменения астрономических параметров, имеем в дискретном случае:

$$N_{ij}(x_j, k) = N_i w(\tilde{x}_j, k) \Delta x, \quad x_j < \tilde{x}_j < x_j + \Delta x$$

$$1 \leq i \leq n, \quad 1 \leq j \leq 2m, \quad k = 1, \ldots, k_0$$

(21)

Здесь $w$ – плотность распределения событий вдоль нормированной координаты. Нормированная переменная определяется через угловую и радиальную координаты следующим образом:

$$x_{jk} = \begin{cases} \vartheta_j(k) / 2\pi, & 1 \leq j \leq m \\ \frac{r_{\max}(k) - r(k)}{r_{\max}(k) - r_{\min}(k)}, & m + 1 \leq j \leq 2m \end{cases}$$

gде $r_{\min}, r_{\max}$ - минимальное и максимальное удаление планеты от центра масс системы, $k_0$ – число небесных тел, используемых в задаче.

Определим матрицу информативности согласно

$$I_{ijk} = \log_2 \frac{N_{ij}}{\sum_j N_{ij}}, \quad N_{ij}(x_{jk}) \neq 0$$

$$I_{ijk} = 0, \quad N_{ij}(x_{jk}) = 0,$$

$$\mathcal{A}_{jk} = \sqrt{\frac{1}{n} \sum_i \left( I_{ijk} - \frac{1}{n} \sum_i I_{ijk} \right)^2}$$

$$1 \leq i \leq n, \quad 1 \leq j \leq 2m, \quad 1 \leq k \leq k_0$$

(22)

Первая величина (22) называется информативностью признака (значения фактора), а вторая величина является среднеквадратичным отклонением информативности или интегральная информативность (ИИ).
Каждой категории можно сопоставить вектор информативности астрономических параметров размерности \( 2m_0 \), составленный из элементов матрицы информативности, путем последовательной записи столбцов, соответствующих нормированной координате, в один столбец, т.е.

\[
c_{is} = I_{ijk} \bigg|_{jk=s} , \quad 1 \leq s \leq 2m_0
\]

(23)

С другой стороны, процесс идентификации и распознавания может рассматриваться как разложение вектора распознаваемого объекта в ряд по векторам категорий (классов распознавания). Этот вектор, состоящий из единиц и нулей, можно определить по координатам небесных тел, соответствующих дате и месту происхождения события \( l \) в виде

\[
a_{ls} = \begin{cases} 1, & (j-1)\Delta x \leq x_{jk}(l) \leq j\Delta x, \quad jk = s \\ 0, & 1 \leq s \leq 2m_0 \end{cases}
\]

(24)

Таким образом, если нормированная координата небесного тела из данных по объекту исследуемой выборки попадает в заданный интервал, элементу вектора придается значение 1, а во всех остальных случаях – значение 0. Перечисление координат осуществляется последовательно, для каждого небесного тела.

В случае, когда система векторов (23) является полной, можно любой вектор (24) представить в виде линейной комбинации векторов системы (23). Коэффициенты этого разложения будут соответствовать уровню сходства данного события с данной категорией. В случае неполной системы векторов (23) точная процедура заменяется распознаванием. При этом уровень сходства данных события с той или иной категорией можно определить по величине скалярного произведения вектора (24) на вектор (23), т.е.

\[
K_{il} = \frac{1}{|a_{l}||c_{i}|} \sum_{s=1}^{2m_0} a_{ls}(A)c_{is}
\]

(25)

Отметим, что возможны четыре исхода, при которых можно истинно или ложно отнести или не отнести данное событие к данной категории. Для учета этих исходов распознавание категорий в системе искусственного интеллекта осуществляется
по параметру сходства, который определяется следующим образом:

\[
S_i = \frac{1}{N} \sum_{l=1}^{N} (BT_{il} + T_{il} - BF_{il} - F_{il}) \cdot 100 \%
\]  
(26)

\(S_i\) – достоверность идентификации «i-й» категории;
\(N\) – количество событий в распознаваемой выборке;
\(BT_{il}\) – уровень сходства «l-го» события с «i-й» категорией, к которой он был правильно отнесен системой;
\(T_{il}\) – уровень сходства «l-го» события с «i-й» категорией, к которой он был правильно не отнесен системой;
\(BF_{il}\) – уровень сходства «l-го» события с «i-й» категорией, к которой он был ошибочно отнесен системой;
\(F_{il}\) – уровень сходства «l-го» события с «i-й» категорией, к которой он был ошибочно не отнесен системой.

При таком определении параметр сходства изменяется в пределах от -100% до 100%, как обычный коэффициент корреляции в статистике. Очевидно, что параметр сходства должен удовлетворять критерию простой проверки

\[ S_i (N_i = 1) = 100 \%
\]

Можно показать, что процедура распознавания по параметру сходства (26) является устойчивой как относительно объема выборки, так и относительно числа ячеек модели [26]. Причина, по которой оказывается возможным идентифицировать подмножества (категории) событий различной даже случайной природы, используя астрономические параметры, достаточно очевидна. Ведь фактически идентифицируются распределения, которые образуются при модулировании исходных распределений астрономическими параметрами. В некоторых случаях этого достаточно, чтобы осуществить распознавание категорий. Эту задачу можно сравнить с разложением солнечного света призмой. Свет представляет собой смесь случайных электромагнитных колебаний, но после прохождения призмы свет разлагается в спектр категорий цвета. При этом случайная природа самого света не меняется.
2.3.3. Исходные данные и технология моделирования землетрясений

База данных землетрясений была сформирована на основе оперативного сейсмологического каталога ГС РАН [24], содержащего 65541 запись событий землетрясений, произошедших в различных регионах мира в период с 1 января 1993 года по 20 ноября 2008 г.

Из исходной базы было образовано несколько различных БД для исследования влияния астрономических параметров на магнитуду и глубину гипофокуса, на ежедневное число землетрясений и на их локализацию.

Категория «Магнитуда» была получена из исходной базы данных путем умножения параметра MPSP на 10 и добавления символа А – см. таблицу 1. Всего было образовано 47 категорий этого типа, которые соответствуют изменению параметра MPSP от 3 до 7.5 с шагом 0.1 (46 категорий) плюс одна категория A0, соответствующая тем случаям, когда по данным каталога [24] параметр MPSP=0. Отметим, что магнитуда MPSP рассчитывается по максимальной скорости смещения в объемных волнах [24].

ТАБЛИЦА 1. Фрагмент базы данных категории «Магнитуда»

| ID  | NAME     | CATS | SUNLON      | SUNDIST      | MOONLON | MOONIST | SUNLON DIST | SUNDIST DIST | MOONLON DIST | MOONIST DIST |
|-----|----------|------|-------------|--------------|---------|---------|-------------|--------------|--------------|--------------|--------------|
| 1   | 01.01.1993 | A54:A54:A56:A53: | 280.9686023746710 | 0.9832953224852 | 13.6193309143572 | 0.0026758287293 |
| 2   | 02.01.1993 | A51:A49: | 281.9877769647200 | 0.983287412929 | 25.8047627280948 | 0.0026514329751 |
| 3   | 03.01.1993 | A60:A52:A46:A62:A53:A54: | 283.0068945266630 | 0.9832755597314 | 38.254447909018 | 0.0026206202125 |
| 4   | 04.01.1993 | A62:A53:A56:A60:A60: | 284.0259498778590 | 0.983270408513 | 51.0313074310990 | 0.0025854001894 |
| 5   | 05.01.1993 | A48: | 285.0449399774140 | 0.983274151922 | 64.1942901475346 | 0.002548333705 |
| 6   | 06.01.1993 | A49:A58: | 286.06386192486330 | 0.9832889650152 | 77.7694840563520 | 0.0025125186647 |
| 7   | 07.01.1993 | A61:A0: | 287.0827135891120 | 0.9833058932933 | 91.7514779009847 | 0.0024808734659 |
| 8   | 08.01.1993 | A55:A55: | 288.101490625240 | 0.9833293611578 | 106.0953151556760 | 0.0024561346250 |
| 9   | 09.01.1993 | A49:A56:A52:A47: | 289.1202049674210 | 0.9833594500691 | 120.7161775556960 | 0.0024402538842 |
| 10  | 10.01.1993 | A66: | 290.1388517853630 | 0.9833961422245 | 135.4972701770000 | 0.002434133125 |

Данные по глубине гипофокуса обрабатывались по формуле:

$$B = 10 \ln H$$

где глубина выражена в километрах. Всего было выделено 54 категории, соответствующие глубине гипофокуса от 0 до 812 км.
В таблице 2 представлен фрагмент базы данных категорий глубины гипофокуса.

ТАБЛИЦА 2. Фрагмент базы данных категории «Глубина гипофокуса»

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>CATS1</th>
<th>SUNLON</th>
<th>SUNDIST</th>
<th>MOONLON</th>
<th>MOONDIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01.01.1993 B35:B35:B35:B35:</td>
<td>280.9686023746710</td>
<td>0.9832953224852</td>
<td>13.6193309143572</td>
<td>0.0026758587293</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02.01.1993 B35:B34:</td>
<td>281.987769647200</td>
<td>0.983287412929</td>
<td>25.804762780948</td>
<td>0.0026514329751</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>03.01.1993 B39:B11:B60:B41:B40:</td>
<td>283.0068945266630</td>
<td>0.9832755597314</td>
<td>38.2524447909018</td>
<td>0.0026206202125</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>04.01.1993 B42:B35:B43:B37:B35:</td>
<td>284.0259498778590</td>
<td>0.9832740284513</td>
<td>51.0313074310990</td>
<td>0.0025854001894</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>05.01.1993 B36:</td>
<td>285.04493997774140</td>
<td>0.9832784151922</td>
<td>64.1942901475346</td>
<td>0.0025483733705</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>06.01.1993 B35:B35:</td>
<td>286.0638619286330</td>
<td>0.9832889650152</td>
<td>77.7694840563520</td>
<td>0.0025125186647</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07.01.1993 B11:B23:B35:B35:</td>
<td>287.0827135891120</td>
<td>0.9833058932933</td>
<td>91.7514779908947</td>
<td>0.0024808734659</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>08.01.1993 B11:B35:B63:</td>
<td>288.1014940625240</td>
<td>0.9833293611578</td>
<td>106.0953151556760</td>
<td>0.0024561346250</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>09.01.1993 B35:B35:B35:B35:</td>
<td>289.1202049674210</td>
<td>0.9833594500693</td>
<td>120.7161775556960</td>
<td>0.0024341353125</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10.01.1993 B35:</td>
<td>290.138851785630</td>
<td>0.9833961422425</td>
<td>135.4972701770000</td>
<td>0.0024341353125</td>
<td></td>
</tr>
</tbody>
</table>

В качестве астрономических параметров были использованы долгота и расстояние от Земли до десяти небесных тел – Солнца, Луны, Марса, Меркурия, Венеры, Юпитера, Сатурна, Урана, Нептуна и Плутона, и долгота Северного Узла Луны. Астрономические параметры вычислялись на каждый день в фиксированной точке с географическими координатами (36.61666667E; 55.08333333N) в 9:00 GMT в топоцентрической системе координат. Отметим, что выбор этой точки не является существенным для решаемого класса задач.

Для проверки различных гипотез из астрономических параметров расстояний было образовано шесть гравитационных комплексов G_1-G_6:

1) суммарный нормированный гравитационный потенциал восьми небесных тел – Луны, Марса, Меркурия, Венеры, Юпитера, Сатурна, Урана, Нептуна;

2) суммарный нормированный гравитационный потенциал семи небесных тел – Луны, Марса, Меркурия, Венеры, Сатурна, Урана, Нептуна;

3) суммарный нормированный гравитационный потенциал шести небесных тел – Марса, Меркурия, Венеры, Сатурна, Урана, Нептуна;
4) суммарный нормированный гравитационный потенциал пяти небесных тел – Марса, Меркурия, Венеры, Урана, Нептуна;
5) суммарный нормированный гравитационный потенциал четырех небесных тел – Марса, Меркурия, Урана, Нептуна;
6) суммарный нормированный гравитационный потенциал девяти небесных тел – Солнца, Луны, Марса, Меркурия, Венеры, Юпитера, Сатурна, Урана, Нептуна.

Таким образом, по определению

\[ G_k = \frac{\varphi_{k,\text{max}} - \varphi_k}{\varphi_{k,\text{max}} - \varphi_{k,\text{min}}} , \quad \varphi_k = -\sum_{i=1}^{N_k} \gamma_i \frac{M_i}{R_i} , \quad k = 1,\ldots,6. \]  

Здесь \( \gamma_i M_i \) – гравитационная постоянная и масса небесного тела соответственно. Из этих комплексов были также образованы шесть других комплексов \( G_7 - G_{12} \), представляющих собой суточное изменение (первую производную по времени) каждого из комплексов \( G_1 - G_6 \) соответственно.

Решение прямой задачи включает в себя нормирование входных параметров и приведение их к одному масштабу изменения в интервале \((0;360)\), разбиение интервалов на \( M \) частей, вычисление матрицы абсолютных частот и информативности, в соответствии с формулами (21-22). Был реализован режим синтеза нескольких моделей, в которых число ячеек принимает любое заданное значение \( M=2,3,\ldots,173 \). Очевидно, что модель \( M_{12} \) наилучшим образом подходит для осуществления месячного прогноза, а модель \( M_{120} \) может быть использована для 3 дневного прогноза.

Решение обратной задачи включает в себя распознавание (прогнозирование) категорий по заданным астрономическим параметрам, в соответствии с уравнениями (23-26). Частным случаем задачи распознавания является определение достоверности идентификации категорий по астрономическим данным в каждой модели. Рассмотрим решение этой задачи в случае исследуемой совокупности событий землетрясений.
2.3.4. Достоверность идентификации категорий магнитуды

Путем обработки исходных данных было получено распределение событий по величине магнитуды – рис. 30.

Заметим, что среди исследуемых событий преобладают легкие и умеренные землетрясения, тогда как в природе преобладают слабые (около 49000 ежегодно) и очень слабые землетрясения (около 9000 ежедневно) [25]. С другой стороны, умеренные и сильные землетрясения, произошедшие в мире в исследуемый период, практически все отражены в каталоге [24]. Поэтому можно ожидать, что именно эти события будут распознаваться наиболее достоверно.

Действительно, на рис. 31 представлены параметр сходства в зависимости от магнитуды в пяти моделях – М12 (месячный прогноз), М28 (двухнедельный прогноз), М90 (четырехдневный прогноз), М120 и М160 (2-х и 3-дневный прогноз). Из этих данных следует, что достоверность идентификации магнитуды по астрономическим параметрам на 20-60% выше для умеренных и сильных землетрясений, чем для легких.

В месячном прогнозе достоверность идентификации магнитуды умеренных и сильных землетрясений достигает 30%, тогда как в 2-4-дневном прогнозе максимальное значение параметра сходства не превосходит 10%. Для сравнения укажем,
что в задачах распознавания социальных категорий по астрономическим данным параметр сходства достигает 80% [27]. В задачах распознавания экономических категорий по астрономическим данным достоверность 15-минутного прогноза категорий повышения/понижения курсов валют достигает 82% на протяжении недели и 100% в часовом прогнозе [7].

Рис. 31. Зависимость параметра сходства от магнитуды

Тем не менее, развитая модель позволяет осуществлять прогноз умеренных и сильных землетрясений, как будет показано ниже. Разумеется, что ценность такого прогноза возрастает, если кроме магнитуды указать еще и координаты события, например, глубину залегания очага (гипофокуса) землетрясения.

2.3.5. Достоверность идентификации глубины гипофокуса

Распределение событий по глубине залегания очагов землетрясений содержит два пика, которые приходятся на глубину 10 и 33 км – рис. 32. Первый пик, видимо, соответствует кровле «гранитного» слоя. Второй пик лежит ниже поверхности «базальтового» слоя (границы Конрада).
Рис. 32. Распределение событий по глубине залегания очагов землетрясений

Параметр сходства категории «глубина залегания очага землетрясения» (гипофокуса) имеет два максимума, которые приходятся на глубину 3 и 33 км соответственно – рис. 33.

Рис. 33. Параметр сходства в зависимости от глубины залегания очагов землетрясений

Неглубокие (3-7 км, 33 км) и глубокие (600 км) землетрясения распознаются лучше, чем средней глубины. Различие между плохо распознаваемыми и хорошо распознаваемыми случаями достигает 47%, что свидетельствует о заметном влиянии небесных тел на некоторые сейсмические процессы. Физический механизм этого влияния пока неизвестен,
однако, скачкообразное изменение параметра сходства с ростом магнитуды – рис. 31, указывает на триггерный (пороговый) механизм, как при подземных взрывах [28]. Иначе говоря, влияние небесных тел лишь запускает сейсмический процесс, но не создает деформации, приводящие к разлому. Причем максимальное влияние небесных тел проявляется в земной коре, а также в зонах субдукции [29] на глубине 600 км, вызывая умеренные и сильные землетрясения с MPSP > 5.

2.3.6. Достоверность идентификации частоты событий

Диаграмма ежедневного числа событий представлена на рис. 34, а результат распознавания частоты событий – на рис. 35.

![Рис. 34. Ежедневное число событий.](image)

Среди событий хорошо распознаются дни с малым числом умеренных и сильных землетрясений ( < 5) и с большим их числом ( > 20). Вместо ежедневного числа событий можно использовать их суммарную магнитуду, поделенную на 5, т.е. параметр

\[
L = \frac{1}{5} \sum_i MPSP_i
\]  

(28)

На рис. 36 представлена частота событий в зависимости от параметра L, а на рис. 38 – результат распознавания этих событий.
Рис. 35. Зависимость параметра сходства от числа событий

Рис. 36. Частота распределения событий.

Рис. 37. Зависимость параметра сходства от критерия L.
Отметим, что кривые на рис 35 и 37 имеют сходное поведение, однако величина параметра сходства при распознавании по критерию L в 3 раза больше, чем при распознавании частоты событий. Следовательно, критерий L является более информативным, нежели частота событий и может служить сейсмической характеристикой дня. Дни с низкой сейсмичностью (L < 5) и с высокой сейсмичностью (L > 20) распознаются достаточно достоверно, причем прогноз может быть дан как на месяц, так и на 3 дня вперед. Полученные результаты позволяют сделать вывод о зависимости некоторых сейсмических процессов от положения небесных тел.

2.3.7. Проверка гравитационных гипотез

Среди механизмов влияния небесных тел на процессы, происходящие в недрах нашей планеты, в первую очередь необходимо исследовать гравитацию. Технология моделирования на основе системы искусственного интеллекта позволяет установить, какие астрономические признаки являются наиболее информативными при распознавании тех или иных категорий, т.е. оказывают на них наибольшее влияние. Это можно сделать как путем прямой оценки информативности, так и путем оценки возбуждающих и тормозящих связей нейронов.

Заметим, что из 65541 записи событий в каталоге [24] в 30016 случаях положение гипофокуса определено на глубине 33 км. Параметр сходства на этой глубине имеет локальный максимум – рис. 33. Сравним эти события, имеющие, видимо, отношение к процессам в магме, с событиями, происходящими на глубине 3 км (напряжения и трещины в земной коре) и на глубине 545-665 км (зоны субдукции). В таблице 3 приведены данные по информативности астрономических признаков трех типов событий в модели M120. В фигурных скобках указан диапазон изменения признака. Отметим, что все признаки нормированы согласно (27) и приведены к одному интервалу изменения с долготой небесных тел – (0;360). Каждый из признаков отражает влияние гравитации преимущественно одного небесного тела, а именно:

G6, G12 – Солнца;
G1, G7 – Юпитера;  
G2, G8 – Сатурна, Луны;  
G3, G9 – Сатурна, Венеры;  
G4, G10 – Венеры;  
G5, G11 – Урана, Марса.

Таблица. 3. Информативность (бит) астрономических признаков 12 гравитационных комплексов G1-G12 в трех различных зонах формирования землетрясений

<table>
<thead>
<tr>
<th>Гравитационные комплексы</th>
<th>Кора 3km</th>
<th>Мagma 33km</th>
<th>Зоны субдукции 545-665 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Астропризнак</td>
<td>Бит</td>
<td>Астропризнак</td>
<td>Бит</td>
</tr>
<tr>
<td>G2 {342, 345}</td>
<td>1.628714</td>
<td>G9 {333, 336}</td>
<td>0.632511</td>
</tr>
<tr>
<td>G3 {351, 354}</td>
<td>1.565744</td>
<td>G7 {3, 6}</td>
<td>0.570593</td>
</tr>
<tr>
<td>G1 {357, 360}</td>
<td>1.563297</td>
<td>G8 {345, 348}</td>
<td>0.570593</td>
</tr>
<tr>
<td>G8 {39, 42}</td>
<td>1.307307</td>
<td>G8 {351, 354}</td>
<td>0.570593</td>
</tr>
<tr>
<td>G3 {354, 357}</td>
<td>1.302067</td>
<td>G3 {348, 351}</td>
<td>0.441355</td>
</tr>
<tr>
<td>G5 {18, 21}</td>
<td>1.286695</td>
<td>G9 {339, 342}</td>
<td>0.431437</td>
</tr>
<tr>
<td>G2 {348, 351}</td>
<td>1.276722</td>
<td>G7 {345, 348}</td>
<td>0.422928</td>
</tr>
<tr>
<td>G2 {351, 354}</td>
<td>1.238849</td>
<td>G8 {357, 360}</td>
<td>0.422928</td>
</tr>
<tr>
<td>G2 {354, 357}</td>
<td>1.140866</td>
<td>G3 {342, 345}</td>
<td>0.416945</td>
</tr>
<tr>
<td>G3 {12, 15}</td>
<td>1.054521</td>
<td>G1 {9, 12}</td>
<td>0.414573</td>
</tr>
<tr>
<td>G9 {45, 48}</td>
<td>1.098683</td>
<td>G1 {18, 21}</td>
<td>0.389067</td>
</tr>
<tr>
<td>G2 {345, 348}</td>
<td>1.092011</td>
<td>G9 {345, 348}</td>
<td>0.382582</td>
</tr>
<tr>
<td>G8 {21, 24}</td>
<td>1.078948</td>
<td>G1 {12, 15}</td>
<td>0.369877</td>
</tr>
<tr>
<td>G10 {342, 345}</td>
<td>1.057963</td>
<td>G9 {357, 360}</td>
<td>0.336634</td>
</tr>
<tr>
<td>G2 {27, 30}</td>
<td>1.053878</td>
<td>G1 {0, 3}</td>
<td>0.324544</td>
</tr>
<tr>
<td>G3 {357, 360}</td>
<td>0.991198</td>
<td>G2 {114, 117}</td>
<td>0.324544</td>
</tr>
<tr>
<td>G11 {306, 309}</td>
<td>0.970354</td>
<td>G3 {357, 360}</td>
<td>0.319902</td>
</tr>
<tr>
<td>G5 {42, 45}</td>
<td>0.955314</td>
<td>G1 {357, 360}</td>
<td>0.317164</td>
</tr>
<tr>
<td>G9 {42, 45}</td>
<td>0.917441</td>
<td>G2 {345, 348}</td>
<td>0.311103</td>
</tr>
<tr>
<td>G10 {12, 15}</td>
<td>0.808547</td>
<td>G2 {354, 357}</td>
<td>0.311103</td>
</tr>
<tr>
<td>G4 {66, 69}</td>
<td>0.797887</td>
<td>G3 {351, 354}</td>
<td>0.311103</td>
</tr>
<tr>
<td>G11 {309, 312}</td>
<td>0.790914</td>
<td>G7 {12, 15}</td>
<td>0.311103</td>
</tr>
<tr>
<td>G9 {48, 51}</td>
<td>0.786323</td>
<td>G2 {351, 354}</td>
<td>0.292553</td>
</tr>
<tr>
<td>G5 {255, 258}</td>
<td>0.778557</td>
<td>G3 {339, 342}</td>
<td>0.292553</td>
</tr>
<tr>
<td>G10 {102, 105}</td>
<td>0.777275</td>
<td>G1 {15, 18}</td>
<td>0.289532</td>
</tr>
<tr>
<td>G2 {15, 18}</td>
<td>0.770603</td>
<td>G2 {342, 345}</td>
<td>0.289532</td>
</tr>
<tr>
<td>G6 {87, 90}</td>
<td>0.614583</td>
<td>G6 {285, 288}</td>
<td>0.059968</td>
</tr>
<tr>
<td>G12 {234, 237}</td>
<td>0.606144</td>
<td>G12 {249, 252}</td>
<td>0.059032</td>
</tr>
</tbody>
</table>

Как следует из данных, приведенных в таблице 3, во всех случаях преобладающее влияние на формирование очагов оказывают Юпитер, Сатурн, Луна и Венера. В коре и в зонах субдукции велика роль гравитационного потенциала, в магме
Главным фактором является производная гравитационного потенциала по времени. Этот результат хорошо соотносится с механикой процессов формирования очагов землетрясений. Действительно в коре и в зонах субдукции главным фактором разрушения является напряженное состояние, вызванное избыточным давлением. Но во внешнем гравитационном поле давление изменяется пропорционально гравитационному потенциалу. В магмее же преобладают гидродинамические процессы, чувствительные к изменению давления во времени. Таким процессом является, например, схлопывание пузыря вблизи твердой поверхности.

Вообще говоря, астрономические признаки (значения факторов) могут оказывать как возбуждение, так и торможение, т.е. как способствовать наступлению события, так и препятствовать ему.

На рис. 38-40 представлены модели нелокальных нейронов трех типов процессов, перечисленных в таблице 3.

Рис. 38. Модель нелокального нейрона 300 событий землетрясений с глубиной гипофокуса 3 км.
Рис. 39. Модель нелокального нейрона 30016 событий землетрясений с глубиной гипофокуса 33 км.

Рис. 40. Модель нелокального нейрона 336 событий землетрясений с глубиной гипофокуса 545-665 км.
Из данных, приведенных на рис. 38, 40 следует, что комплексы $G_1$, $G_2$, $G_3$ (GRAV1-GRAV3) оказывают возбуждающее влияние на процессы в земной коре, а комплексы $G_2$, $G_3$, $G_8$, $G_9$ – в зонах субдукции. Процессы в магме возбуждают комплексы $G_3$, $G_7$, $G_8$, $G_9$. Из этого можно предположить, что процессы в зонах субдукции носят смешанный характер, т.е. включают, как тектонические процессы, так и процессы в магме.

Полученные результаты носят предварительный, качественный характер. Для получения количественных результатов сравним годичные изменения гравитационных потенциалов, входящих в комплексы $G_1$, $G_2$, $G_3$, с величиной гидростатического давления на глубине 3 км – рис. 41. Отметим, что второй и третий комплексы практически не отличаются между собой в этом масштабе, а годичные изменения всех трех комплексов сравнимы с величиной гидростатического давления. Разумеется, что это лишь потенциальная энергия. Неизвестно, какая доля этой энергии способна акумулироваться в форме упругих напряжений, однако ясно, что если существует механизм поглощения и накопления этой энергии в форме тектонических напряжений, тогда совокупное влияние Юпитера, Луны и Сатурна способно вызвать сейсмические события не только на глубине 3 км, но и на большей глубине.

Рис. 41. Годичные изменения гравитационных потенциалов, нормированных на величину гидростатического давления на глубине 3 км.
В некоторых нестационарных процессах, например, в конвекции важны не абсолютные значения параметров, а их изменения во времени (т.е. их первые производные по времени). На рис. 42 представлены ежедневные абсолютные изменения трех гравитационных комплексов $G_1$, $G_2$, $G_3$ (обозначены GRAV7-GRAV9 соответственно). Отметим, что в этом масштабе комплексы $G_8$, $G_9$ значительно различаются между собой, что обусловлено быстрым движением Луны вокруг Земли по сравнению с относительно медленным движением Юпитера и Сатурна.

Рис. 42. Ежедневное абсолютное изменение гравитационных потенциалов.

В сплошной среде, такой, как магма, могут возникать разрывы, ведущие к образованию пузырьков [30]. Для таких неоднородных включений изменение гравитационного потенциала равноносильно изменению внешнего давления. За сутки в магме индуцированное изменение давление составляет в некоторые месяцы 15-20 атмосфер. Таким образом, гравитационное воздействие небесных тел может значительно усиливаться за счет неоднородностей плотности среды, таких как пузырьки и микротрещины.
2.3.8. Достоверность прогноза землетрясений

В сейсмологии широко используются энергетические оценки силы землетрясения, одной из которых является уравнение Гуттенберга-Рихтера [31]:

\[ \log_{10} E_s = aMS + b \]

где \( E_s \) – сейсмическая энергия в джоулях, \( a = 1.5, b = 11.8 \), MS – магнитуда поверхностных волн. Используя это уравнение можно составить два энергетических критерия для оценки сейсмической активности на каждый день:

\[ E = \ln \sum_i \exp(aMPSP_i) \]

\[ U = \ln \sum_i H_i^3 \exp(aMPSP_i) \]

(29)

На рис. 43 представлен результат распознавания событий по критериям (29). Параметр сходства при распознавании по энергетическим критериям понизился в 2-3 раза по сравнению с результатом распознавания по критерию магнитуды (28). Это связано с тем, что сейсмические данные не отличаются большой точностью, поэтому их обработка по нелинейным формулам типа (29) понижает достоверность распознавания.

Рис. 43. зависимость параметра сходства от энергетических критериев.

Для иллюстрации степени рассеяния сейсмических данных на рис. 44 представлена зависимость магнитуды поверхностных волн от параметра MPSP, обобщающая 12684 события из
каталога [24]. Разброс данных относительно полученной линейной зависимости довольно велик, что означает также высокую степень неопределенности самого параметра MPSP. Действительно, на рис. 45 представлена зависимость магнитуды объемных волн от магнитуды поверхностных волн, обобщающая данные тех же самых 12684 событий из каталога [24]. Можно обратить внимание, что уравнения тренда на рис.44 и 45 не согласованы друг с другом, хотя для их построения использованы одни те же данные.

Рис. 44. Зависимость магнитуды поверхностных волн от параметра MPSP

Рис. 45. Зависимость магнитуды MPSP от магнитуды поверхностных волн.
Высокая степень неопределенности данных магнитуды является ограничением достоверности распознавания событий по этому параметру – рис. 31. С другой стороны, сумма магнитуды нескольких событий за день является более достоверным параметром, нежели магнитуда отдельного события, поэтому повышается достоверность распознавания дней с высокими и низкими значениями L – рис. 37. Предположительно это можно объяснить тем, что при суммировании зашумленных сигналов возрастает отношение сигнал/шум, за счет того, что при неограниченном увеличении выборки сумма шума стремится к нулю.

Заметим, что из 65541 записи событий в каталоге [24] в 30016 случаях положение гипофокуса определено на глубине 33 км. Среди этих событий, имеющих, видимо, отношение к процессам в магме, в 7376 случаях регистрировались поверхностные волны. По этим данным можно определить корреляционные зависимости магнитуды поверхностных и объемных волн в виде:

$$\begin{align*}
    MS &= 1.2288\text{MPSP} – 1.7109, R^2 = 0.6317; H=33 \text{ km. (30)} \\
    \text{MPSP} &= 0.5141MS + 2.8968, R^2 = 0.6317; H=33 \text{ km.}
\end{align*}$$

Полученные зависимости (30) не согласованы друг с другом и мало отличаются от аналогичных уравнений, представленных на рис. 44-45. Можно согласовать второе уравнение (30) с первым, но при этом значительно понижается достоверность аппроксимации:

$$\begin{align*}
    \text{MPSP} &= 0.8085MS + 1.3923, R^2 = 0.4208; H=33 \text{ km. (31)}
\end{align*}$$

Следовательно, сравнительно низкая достоверность распознавания событий землетрясений по величине магнитуды – рис. 31, обусловлена, в том числе, рассеянием данных. Тем не менее, полученные результаты позволяют сделать вывод о зависимости некоторых сейсмических процессов от положения, скоростей и ускорений небесных тел.

Таким образом, эта модель позволяет распознавать дни с высокой и низкой сейсмической активностью для землетрясений с магнитудой MPSP > 5 и с глубиной гипофокуса 3, 33 и 545-665 км. Достоверность прогноза по параметру усредненной магнитуды на месяц и на 2-3 дня вперед составляет 20-60% для дней с низкой и высокой сейсмичностью.
Проверка гипотезы гравитационного влияния небесных тел на сейсмические процессы в коре, магме и зонах субдукции показала, что совокупное гравитационное влияние Юпитера, Луны и Сатурна способно вызвать сейсмические события, хотя детальный механизм этого влияния остается неизвестным.


Как было установлено, увеличение длины ряда с 5082 до 16032 дней и числа событий с 65541 до 128320 позволяет существенно поднять как среднее так максимальное значение параметра сходства категории магнитуда – рис. 46.

Рис. 46. Параметр сходства категории магнитуда в трех моделях [1]: M160(G) – гравитация; M160(G,EOP) – гравитация и смещение полюса; M160(G,EOP,Bz) – гравитация, смещение полюса и магнитное поле.
Это означает, что с увеличением количества событий и длины временного ряда событий (землетрясений), возрастает степень когерентности данных и достоверность прогнозирования событий по астрономическим данным. По мнению авторов это происходит за счет улучшения условий для подавления шума при увеличении объема выборки и подтверждает, что воздействие небесных тел является фактором, существенно влияющим на формирование умеренных и сильных землетрясений. Эти результаты согласуются с известными моделями приливного воздействия на сейсмическую активность [32-49].

В работах [4-5] исследованы семантические информационные модели, содержащие данные о сейсмических событиях, астрономические параметры небесных тел, параметры смещения географического полюса, а также параметры магнитного поля Земли. Было установлено, что добавление в информационную модель данных по магнитному полю и смещению географических полюсов позволяет увеличить достоверность прогноза землетрясений – рис. 46, что указывает на существование глобальных общепланетарных механизмов формирования сейсмических событий.

Литература к главе II
3. Трунев А. П. , Луценко Е. В. / Прогнозирование сейсмической активности и климата на основе семантических информационных моделей // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ)
165


12. Alexander Trounev. Solver for unsteady flow with the use of Mathematica FEM//https://community.wolfram.com/groups/-/m/t/1433064


20. Чередниченко Н.А. Трунев А.П. / Прогнозирование глобальных климатических аномалий Эль-Ниньо и Ла-Нинья с применением системы


32. Левин Б.В., Павлов В.П. Влияние астрономических факторов на вариации плотности энергии в твердой оболочке Земли // Изв. РАН. Физика Земли. 2003. № 3. С. 71–76.

33. Б.В.Левин. О природе некоторых периодических изменений в сейсмическом режиме Земли//Вестник ДВО РАН. 2006. № 1

34. Широков В.А. Разработка моделей подготовки сильных землетрясений и вулканических извержений на основе изучения их связи с космическими ритмами // Материалы Всероссийской научной конференции 100-летие Камчатской экспедиции Русского географического общества 1908-1910 гг. Петропавловск-Камчатский, 2009.


3.1. Введение

Существует три основных точки роста современных информационных технологий: это глобальные сети и мобильные коммуникации (Net), перспективные человеко-машины интерфейсы (Int), интеллектуальные технологии (intelligent technology – IT) (рисунок 1) [80]:

![Рисунок 1. Три наиболее перспективных направления развития современных информационных технологий](image)

Как известно, системный (синергетический) эффект обычно наблюдается в мультидисциплинарных и междисциплинарных научных исследованиях. Это означает, что большой интерес представляют направления исследований и разработок, находящиеся на перекрытии перечисленных выше трех перспективных направлений, а именно: перспективные интерфейсы в глобальных мобильных сетях, перспективные интеллектуальные интерфейсы и применение технологий искусственного интеллекта в Internet и мобильных коммуникациях. И особенно высокую актуальность имеет
разработка и применение перспективных интеллектуальных интерфейсов в Internet и мобильных коммуникациях

3.2. От больших данных к большой информации, а от нее к большим знаниям

Internet постепенно интеллектуализируется и превращается из нелокального хранилища больших данных (big data) в информационное пространство, содержащее осмысленные большие данные, т. е. «большую информацию» (great info), а затем в пространство знаний или «когнитивное пространство», в котором большая информация активно используется для достижения целей (управления) и тем самым превращается в «большие знания» (great knowledge).

Появляется все больше сайтов, посвященных искусственному интеллекту, в открытом доступе появляются базы данных для машинного обучения (UCI, Kaggle и другие) и даже on-line интеллектуальные приложения, совершенствуются и интерфейсы, применяемые в Internet. Показательно приобретение разработчиком одной из первых глобальных социальных сетей Facebook Марком Цукербергом фирмы Oculus, являющейся ведущим в мире разработчиком и производителем амуниции виртуальной реальности. Однако учащиеся и ученые до сих пор практически не замечают, что уже давно существует и действует открытая масштабируемая интерактивная интеллектуальная on-line среда для обучения и научных исследований, основанная на автоматизированном системно-когнитивном анализе (АСК-анализ) и его программном инструментарии – интеллектуальной системе «Эйдос», а также сайте автора. Данная презентация является ее своеобразной презентацией и призвана ознакомить потенциальных пользователей с возможностями этой среды.

3.2.1. Данные

Данные – это информация, записанная на каком-либо носителе (или находящаяся в каналах связи) и представленная на каком-то языке или в системе кодирования.
Это определение является общепринятым\(^1\), но не выдерживает никакой критики.

Во-первых, обычно определение понятия дается через более общее понятие и выделение специфического признака.

*Например:* млекопитающее — это животное (более общее понятие), выкармливающее своих детенышей молоком (специфический признак).

Если следовать этой логике, то понятие информации должно быть более общим, чем понятие данных, а на самом деле как раз наоборот. Кроме того, специфическим признаком информации, которая является данными, оказывается то, что она записана на каком-то носителе, в то время как и данные и информация, всегда записаны на каком-либо носителе в какой-то системе кодирования и невозможно даже представить себе информацию, не записанной на носителе и не представленной на каком-либо языке.

Во-вторых, естественно, и более общее понятие, и специфический признак, должны быть *известны* и сами не требовать определения, иначе получится, что мы определяем одно неизвестное через другое неизвестное, иногда даже более неизвестное, чем первое. Но понятие информации является не менее неизвестным, чем определяемое через него понятие данных.

*Например*, мы определяем что такое бутерброд и говорим: «бутерброд это хлеб, на который намазано масло». А когда мы спрашиваем, что же такое хлеб, нам отвечают: «Но так это же просто: это то, на что намазывают масло, когда делают бутерброд». И когда, наконец, мы спрашиваем, а что такое масло, нам говорят: «Но это Вы уже и сами должны были догадаться, — это то, что намазывают на хлеб, когда делают бутерброд». Мы уже не говорим о смысле слова: «намазывают». Все вместе взятые эти «определения» выглядят уже просто как издевательство. Наверное это было бы даже смешно, если бы не было грустно, т. к. в науке подобный способ давать определения, как это ни странно, довольно распространен. Например нетрудно найти подобные «определения» материи и сознания друг через

---

\(^1\) См., например: [http://dic.academic.ru/dic.nsf/ruwiki/71919](http://dic.academic.ru/dic.nsf/ruwiki/71919)
друга: материя – это то, что существует вне и независимо от сознания, а сознание это способность мозга отражать материю\(^2\).

Исходные данные об объекте управления обычно представлены в форме баз данных, чаще всего временных рядов, т. е. данных, привязанных ко времени. В соответствии с методологией и технологией автоматизированного системно-когнитивного анализа (АСК-анализ), развиваемой проф. Е. В. Луценко, для управления и принятия решений использовать непосредственно исходные данные не представляется возможным. Точнее сделать это можно, но результат управления при таком подходе оказывается мало чем отличающимся от случайного. Для реального же решения задачи управления необходимо предварительно преобразовать данные в информацию, о том, какие воздействия на объект моделирования к каким последствиям приводят, и в знания о том, какие значения факторов применить для воздействия на объект моделирования, чтобы он перешел в заранее заданные желательные целевые состояния.

3.2.2. Информация

Информация есть осмысленные данные.

Смысл данных, в соответствии с концепцией смысла Шенка-Абельсона [21], состоит в том, что известны причинно-следственные зависимости между событиями, которые описываются этими данными. Понятие причинно-следственных связей относится к реальной области. Данные же являются лишь моделью, с определенной степенью адекватности отражающей реальную предметную область. Поэтому в данных никаких причинно-следственных связей нет и выявить их в данных невозможно.

Но причинно следственные связи вполне возможно выявить между событиями, отражаемыми этими данными. Но для этого

нужно предварительно преобразовать базу исходных данных в базу событий. Операция выявления причинно-следственных связей между событиями, отраженными в данных, называется «Анализ данных». По сути, анализ данных представляет собой их осмысление и преобразование в информацию.

Например, анализируя временные ряды, отражающие события на фондовом рынке, мы начинаем замечать, что если вырос спрос на какую-либо валюту, то за этим обычно следует повышение ее курса.

Анализ данных включает следующие этапы:
1. Выявление событий в данных:
   – разработка классификационных и описательных шкал и градаций;
   – преобразование исходных в базу событий – эвентологическую базу, путем кодирования исходных данных с применением классификационных и описательных шкал и градаций, т. е. по сути путем нормализации исходных данных.
2. Выявление причинно-следственных зависимостей между событиями в эвентологической базе данных.

В случае систем управления, событиями в данных являются совпадения определенных значений входных факторов и выходных параметров объекта управления, т. е. по сути, случаи перехода объекта управления в определенные будущие состояния, соответствующие классам, под действием определенных сочетаний значений управляющих факторов. Качественные значения входных факторов и выходных параметров естественно формализовать в форме лингвистических переменных. Если же входные факторы и выходные параметры являются числовыми, то их значения измеряются с некоторой погрешностью и фактически представляют собой интервальные числовые значения, которые также могут быть представлены или формализованы в форме порядковых лингвистических переменных (типа: «малые», «средние», «большие» значения показателей).

Какие же математические меры могут быть использованы для количественного измерения силы и направления причинно-следственных зависимостей?
Наиболее очевидным ответом на этот вопрос, который обычно первым всем приходит на ум, является: «Корреляция». Однако, в статистике хорошо известно, что это совершенно не так, т. к. для выявления причинно-следственных связей в соответствии с методом научной индукции (Ф. Бэкон, Дж. Милль) необходимо сравнивать результаты по крайней мере в двух группах, в одной из которых фактор действовал, а в другой нет.

Например, на плакате, выпущенном полицией, написано: «По статистике, порядка 7,5-8% аварий в России ежегодно совершается по вине водителей, находящихся в состоянии алкогольного опьянения». Все. Точка. Больше ничего не написано. Однако, чтобы понять, является ли состояние алкогольного опьянения фактором, увеличивающим риск совершения ДТП или его тяжесть, этой информации недостаточно. Для этого обязательно необходима также информация о том, сколько процентов аварий в России ежегодно совершается по вине трезвых водителей. Но эта информация не приводится, поэтому формально здесь возможно три варианта: 1) по вине трезвых водителей аварий совершается меньше, чем по вине пьяных; 2) по вине трезвых водителей аварий совершается столько же, сколько по вине пьяных; 3) по вине трезвых водителей аварий совершается больше, чем по вине пьяных. Первый вариант содержит информацию о том, что опьянение – это фактор риска совершения ДТП, второй – что это никак не влияет на риск совершения ДТП, а третий – что опьянение уменьшает его. Конечно, все понимают, что в жизни реализуется 1-ф вариант. Но об этом ведь нет прямых статистических данных. Таким образом, знак разности этих процентов определяет направление влияния этого фактора, а модуль этой разности силу его влияния, что и используется как один из частных критериев знаний в АСК-анализе и системе «Эйдос» [35].

Для преобразования исходных данных в информацию необходимо не только выявить события в этих данных, но и найти причинно-следственные связи между этими событиями. В АСК-анализе предлагается 7 количественных мер причинно-

---

3 Автор такой плакат видел, когда проходил медосмотр перед получением прав нового образца.
следственных связей, основной из которых является семантическая мера целесообразности информации по А. Харкевичу. Все эти меры причинно-следственных связей основаны на сравнении условных вероятностей встречи различных значений факторов при переходе объекта моделирования в различные состояния и по всей выборке.

3.2.3. Знания

Знания – это информация, полезная для достижения целей, т. е. для управления.

Значит для преобразования информации в знания необходимо:

1. Поставить цель (классифицировать будущие состояния моделируемого объекта на целевые и нежелательные в какой-то шкале, лучше всего в порядковой или числовой).

2. Оценить полезность информации для достижения этой цели (знак и силу влияния).

Второй пункт, по сути, выполнен при преобразовании данных в информацию. Поэтому остается выполнить только первый пункт, т. к. классифицировать будущие состояния объекта управления как желательные (целевые) и нежелательные.

Знания могут быть представлены в различных формах, характеризующихся различной степенью формализации:

– вообще неформализованные знания, т. е. знания в своей собственной форме, ноу-хау (мышление без вербализации есть медитация);
– знания, формализованные в естественном вербальном языке;
– знания, формализованные в виде различных методик, схем, алгоритмов, планов, таблиц и отношений между ними (базы данных);
– знания в форме технологий, организационных, производственных, социально-экономических и политических структур;
– знания, формализованные в виде математических моделей и методов представления знаний в автоматизированных
интеллектуальных системах (логическая, фреймовая, сетевая, продукционная, нечеткая и другие).

Таким образом, для решения сформулированной проблемы необходимо осознанно и целенаправленно последовательно повышать степень формализации исходных данных до уровня, который позволяет ввести исходные данные в интеллектуальную систему, а затем:

– преобразовывать исходные данные в информацию;
– преобразовать информацию в знания;
– использовать знания для решения задач управления, принятия решений и исследования предметной области.

Процесс преобразования данных в информацию, а ее в знания называется анализ. Основные его этапы приведены на рисунке 2.

В системе «Эйдос» этот процесс осуществляется в следующей последовательности (рисунок 3).

Основные публикации автора по вопросам выявления, представления и использования знаний [36, 37, 38].

Из вышеизложенного можно сделать обоснованный вывод о том, что АСК-анализ и система «Эйдос» обеспечивают движение познания от эмпирических данных к информации, а от нее к знаниям. По сути, это движение от феноменологических моделей, описывающих явления внешне, к содержательным теоретическим моделям [39].

Появляется все больше сайтов, посвященных искусственному интеллекту, в открытом доступе появляются базы данных для машинного обучения (UCI⁵, Kaggle⁶ и другие) и даже on-line интеллектуальные приложения, совершенствуется и интерфейсы, применимые в Internet.

В этом смысле показательно приобретение разработчиком одной из первых и наиболее популярных по сегодняшний день глобальных социальных сетей Facebook Марком Цукербергом фирмы Oculus, являющейся ведущим в мире разработчиком и производителем амуниции виртуальной реальности.

Однако учащиеся и ученые до сих пор практически не замечают, что уже давно существует и действует открытая

---

⁵ http://archive.ics.uci.edu/ml/datasets.html
⁶ https://www.kaggle.com/datasets
масштабируемая интерактивная интеллектуальная on-line среда для обучения и научных исследований, основанная на автоматизированном системно-когнитивном анализе (АСК-анализ) и его программном инструментарии – интеллектуальной системе «Эйдос», а также сайте автора.

О соотношении содержания понятий: «Данные», «Информация» и «Знания»

Рисунок 2. Преобразование данных в информацию, а ее знания
Рисунок 3. Преобразование данных в информацию, а ее знания в системе «Эйдос»
Ниже рассмотрим основные компоненты этой среды подробнее.

3.3. Кратко об АСК-анализе и системе «Эйдос»
3.3.1. Что же такое АСК-анализ?

Автоматизированный системно-когнитивный анализ (АСК-анализ) – это новый универсальный метод искусственного интеллекта, представляющий собой единственный в настоящее время вариант автоматизированного системного анализа, а именно, системный анализ, структурированный по базовым когнитивным операциям.

Известно, что системный анализ является одним из общепризнанных в науке методов решения проблем и многими учеными рассматривается вообще как методология научного познания. Однако как впервые заметил еще в 1984 году проф. И. П. Стабин⁷ практическое применение системного анализа наталкивается на проблему, суть которой состоит в том, что методология системного анализа успешно применяется в сравнительно простых случаях, в которых в принципе можно обойтись и без нее, тогда как в реальных сложных ситуациях, она чрезвычайно востребован и у него нет альтернатив, сделать это удается очень редко. Проф. И. П. Стабин первым предложил и путь решения этой проблемы, состоящий в автоматизации системного анализа, он же ввел и термин: «Автоматизированный системный анализ» (АСА).

3.3.2. Работы каких ученых сыграли большую роль в создании АСК-анализа?

Автора идеи АСА проф. И. П. Стабина мы упомянули выше.
Теперь необходимо отметить отечественных классиков методологии системного анализа проф. Ф. И. Перегудова и проф.

----
Ф. П. Тарасенко, которые в своих фундаментальных работах 8 подробно рассмотрели математические методы, которые могли бы быть успешно применены для автоматизации отдельных этапов системного анализа. Однако даже самые лучшие математические методы не могут быть использованы на практике без эффективно реализующих их программных средств, а путь от научного метода, реализуемого с помощью математики к его эффективной программной системе долг и сложен. Обусловлено это тем обстоятельством, что ЦЭВМ — это дискретный автомат, работающий только в рамках дискретной математики. Для использования ЦЭВМ необходимо разработать численные методы или методики их реализации на компьютере. А затем реализовать и отладить компьютерную программу, основанную на этом численном методе.

В числе первых попыток реального использования автоматизированного системного анализа следует отметить монографию [11] 9 и докторскую диссертацию проф. В. С. Симанкова (2002). В этих работах идея автоматизации системного анализа была основана на высокой детализации этапов системного анализа и подборе уже существующих программных систем, автоматизирующих эти этапы. Эта попытка была реализована проф. В. С. Симанковым, однако лишь для специального случая исследования в области возобновляемой энергетики, где использовались системы разных разработчиков, созданные с помощью различного инструментария и не имеющие программных интерфейсов друг с другом, т. е. не образующие единой автоматизированной системы. Эта попытка, безусловно, была большим шагом по пути, предложенному проф. И. П. Стабиным, но ее нельзя признать обеспечивающей достижение поставленной им цели: создание работающего автоматизированного системного анализа. Эта работа не привела к созданию единой универсальной программной системы,

---
автоматизирующий системный анализ, которую можно было бы успешно применять в различных предметных областях.

3.3.3. Кем и когда создан АСК-анализ?


Основная идея Е. В. Луценко, позволившая сделать это, состоит в рассмотрении автоматизированного системного анализа как метода познания (отсюда и использование термина: «когнитивный» от «cognitio» – знание, познание, лат. ).

Эта идея позволила структурировать автоматизированный системный анализ не по этапам, как это пытались сделать другие ученые, а по конкретным базовым когнитивным операциям (БКОСА), т. е. таким операциям, из комбинаций которых конструируются все возможные операции системного анализа. Таких базовых операций оказалось 10 и они образуют когнитивный конфигуратор:

1) присвоение имен;
2) восприятие;
3) обобщение (синтез, индукция);
4) абстрагирование;
5) оценка адекватности модели;
6) сравнение, идентификация и прогнозирование;
7) дедукция, силлогизм и абдукция;
8) классификация и генерация конструктов;
9) содержательное сравнение;
10) планирование и принятие решений об управлении.

Каждая из этих операций достаточно элементарна для формализации и программной реализации.

Рассмотрим чуть подробнее п. 7. Пример силлогизма (или дедуктивного рассуждения «от общего к частному»):

10 Ссылки на некоторые из них приведены здесь:
http://lc.kubagro.ru/ados/_Aidos-X.htm
Всякий человек смертен (большая посылка)
Сократ – человек (меньшая посылка)
------------
Сократ смертен (заключение)

**Абдукция** представляет вид вывода с той особенностью, что из посылки, которая является условным высказыванием, и заключения вытекает вторая посылка. Например, если рассмотреть тот же пример Сократом:

Всякий человек смертен (большая посылка)
Сократ смертен (заключение)
------------

Мы можем предположить, что меньшая посылка: «Сократ – человек (меньшая посылка)».

Однако, кроме указания одного признака Сократа: что он смертен, мы можем привести и другие его признаки, которые могут помочь идентифицировать его как человека или препятствовать этому.

По сути, при абдукции мы по признакам объекта, его экстенсональному описанию, относим его к обобщающим категориям: реперентным классам [34], т. е. восстанавливаем его интенсональное описание, и делаем это путем решения задачи определения степени релевантности объекта классу или решения задачи классификации (идентификации, распознавания, прогнозирования, классификации, диагностики). При этом мы никогда не можем точно установить принадлежит ли объект классу, но можем лишь высказать гипотезу [35] об этом и оценить степень достоверности этой гипотезы (ее релевантности). Поэтому абдукция имеет широкое применение в системах искусственного интеллекта, в т. ч. в системе «Эйдос».

### 3.3.4. Что включает в себя АСК-анализ?

АСК-анализ Е. В. Луценко представляет собой единственный существующий в настоящее время реально работающий вариант автоматизированного системного анализа. Но, конечно, это совершенно не исключает того, что в будущем, возможно, будут разработаны и другие его варианты.

Автоматизированный системно-когнитивный анализ включает: формализуемую когнитивную концепцию,
математическую модель, методику численных расчетов и реализующий их программный инструментарий, в качестве которого в настоящее время выступает постоянно совершенствуемая автором универсальная когнитивная аналитическая система "Эйдос".

**Компоненты АСК-анализа:**
- формализуемая когнитивная концепция и следующий из нее когнитивный конфигurator;
- теоретические основы, методология, технология и методика АСК-анализа;
- обобщенная и частные математические модели АСК-анализа, основанная на системном обобщении теории информации;
- методика численных расчетов, в универсальной форме реализующая математическую модель АСК-анализа на компьютерах, включая иерархическую структуру данных и 24 детальных алгоритма 10 БКОСА;
- специальное инструментальное программное обеспечение, реализующее математическую модель и численный метод АСК-анализа – Универсальная когнитивная аналитическая система "Эйдос".

Все эти компоненты АСК-анализа подробно описаны в многочисленных публикациях [] и в данной работе делать это еще раз нецелесообразно.

**Этапы АСК-анализа:**
1) когнитивно-целевая структуризация предметной области;
2) формализация предметной области (конструирование классификационных и описательных шкал и градаций и подготовка обучающей выборки);
3) синтез системы обобщенных и частных моделей предметной области (в настоящее время система «Эйдос» поддерживает 3 статистические модели и 7 системно-когнитивных моделей);
4) оценка достоверности (верификация) системы моделей предметной области;
5) повышение достоверности системы моделей, в т. ч. адаптация и пересинтез этих моделей;
6) решение задач идентификации, прогнозирования и поддержки принятия решений;
7) решение задачи исследования объекта моделирования (процесса, явления) путем исследования его моделей: кластерно-конструктивный анализ классов и факторов; содержательное сравнение классов факторов; изучение системы детерминации состояний моделируемого объекта, нелокальные нейроны и интерпретируемые нейронные сети прямого счета; построение классических когнитивных моделей (когнитивных карт); построение интегральных когнитивных моделей (интегральных когнитивных карт).

3.3.5. Какие ученые принимали и сейчас принимают участие в развитии АСК-анализа?
3.3.6. Каков индекс цитирования ученых, принимающих участие в развитии АСК-анализа?

Работы по АСК-анализу вызывают большой интерес у научной общественности. Это подтверждается высокими индексами цитирования этих ученых (например, проф. Е. В. Луценко занимает 2-ю позицию в России по индексу Хирша (41) среди ученых в области кибернетики, к которой относится искусственный интеллект и теория управления).

3.3.7. Докторские и кандидатские диссертации защищенные с применением АСК-анализа в различных областях науки

Метод системно-когнитивного анализа и его программный инструментарий интеллектуальная система "Эйдос" были успешно применены при проведении ряда кандидатских и докторских диссертационных работ в ряде различных предметных областей по экономическим, техническим, биологическим, психологическим и медицинским наукам. С применением АСК-анализа проведены исследования и защищены диссертации:

- 5 докторов экономических наук

- 2 доктора технических наук:
  ФИО В стадии выхода на защиту

- 2 доктора биологических наук:

- 4 кандидата психологических наук:
На текущий момент времени в процессе выполнения и выхода на защиту находится еще несколько диссертаций на соискание ученых степеней кандидатов и докторов экономических, технических и биологических наук.

3.3.8. Сколько грантов РФФИ и РГНФ выполнено и выполняется с применением АСК-анализа?

С применением АСК-анализа с использованием системы "Эйдос" были выполнены (или находятся в процессе выполнения) следующие гранты РФФИ и РГНФ (пронумерованы только одобренные проекты):

**РФФИ:**

<table>
<thead>
<tr>
<th>№</th>
<th>Номер проекта</th>
<th>Название проекта</th>
<th>Начало - окончание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02-01-00035-a</td>
<td>Разработка компьютерных методов изучения эмерджентных свойств плодовых культур с дальнейшим использованием их для оптимизации выращивания</td>
<td>2002 - 2004</td>
</tr>
<tr>
<td>2</td>
<td>02-05-64234-a</td>
<td>Разработка теории многокритериальной оценки ландшафтных и метеорологических характеристик юга России для увеличения продуктивности плодовых культур на основе создания системы банков данных и компьютерного моделирования.</td>
<td>2002 - 2003</td>
</tr>
<tr>
<td>3</td>
<td>03-04-96771-р2003юг_а</td>
<td>Разработка новой методологии районирования сортов сельскохозяйственных культур на основе системного подхода при анализе и математическом прогнозе их жизнеобеспечения и продуктивности</td>
<td>2003 - 2005</td>
</tr>
<tr>
<td>3</td>
<td>03-07-</td>
<td>Создание системы мониторинга,</td>
<td>2003-</td>
</tr>
<tr>
<td>Номер</td>
<td>Проект</td>
<td>Описание</td>
<td>Годы</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>96801-р2003юг_в</td>
<td>прогнозирования, анализа и поддержки управленческих решений по продуктивности плодовых культур на основе электронных баз данных</td>
<td>2005</td>
</tr>
<tr>
<td>2</td>
<td>06-06-96644-р_юг_а</td>
<td>Семантические информационные модели управления агропромышленным комплексом</td>
<td>2006 - 2008</td>
</tr>
<tr>
<td>3</td>
<td>07-07-13510-офи_ц</td>
<td>Инвестиционное управление АПК на основе методологии системно-когнитивного анализа</td>
<td>2007 - 2008</td>
</tr>
<tr>
<td>4</td>
<td>08-06-99005-р_офи</td>
<td>Управление в АПК исходя из критерия качества жизни</td>
<td>2008 - 2009</td>
</tr>
<tr>
<td>5</td>
<td>09-06-13509-офи_ц</td>
<td>Системно-когнитивные основы инвестиционного управления региональным агропромышленным комплексом</td>
<td>2009 - 2010</td>
</tr>
<tr>
<td>6</td>
<td>11-06-96508-р_юг_ц</td>
<td>Системно-когнитивные основы инвестиционного управления региональным агропромышленным комплексом</td>
<td>2011 - 2012</td>
</tr>
<tr>
<td>7</td>
<td>13-07-96507</td>
<td>Принципы создания облачного сервиса по курсу математики с визуализацией понятийного аппарата, процесса доказательств теорем и выполнения практических заданий</td>
<td>2013 - 2014</td>
</tr>
<tr>
<td>8</td>
<td>15-06-02569</td>
<td>Когнитивные модели прогнозирования развития многоотраслевой корпорации</td>
<td>2015 - 2017</td>
</tr>
<tr>
<td>9</td>
<td>16-06-00114</td>
<td>Разработка интеллектуальной технологии исследования влияния экологических факторов на различные аспекты качества жизни населения региона</td>
<td>2016 – 2018</td>
</tr>
<tr>
<td>10</td>
<td>15-29-02530</td>
<td>Управление генресурсами семейства Rosaceae и Juglandaceae для сохранения и использования биоразнообразия культурных растений на основе информационной системы, включая оцифровку коллекций</td>
<td>2015 - 2017</td>
</tr>
<tr>
<td>11</td>
<td>15-29-02545</td>
<td>Ампелографическое и молекулярно-генетическое изучение происхождения, структуры, динамики генетических ресурсов рода Vitis (Tournef) L., их систематизация и оцифровка для эффективного управления биоресурсами</td>
<td>2015 - 2017</td>
</tr>
<tr>
<td>№</td>
<td>Номер проекта</td>
<td>Название проекта</td>
<td>Начало - окончание</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1</td>
<td>13-02-00440a</td>
<td>Методологические основы управления экономической устойчивостью перерабатывающего комплекса региона с применением технологий искусственного интеллекта</td>
<td>2013 - 2015</td>
</tr>
<tr>
<td>2</td>
<td>16-02-00185a</td>
<td>Управление качеством жизни населения региона через объемы и направленность инвестиций в АПК на примере Краснодарского края</td>
<td>2018 – 2018</td>
</tr>
<tr>
<td>2</td>
<td>17-02-00064a</td>
<td>Системно-когнитивный анализ в управлении номенклатурой и объемами закупки-реализации продукции в торговой агрофирме</td>
<td>2017 – 2019</td>
</tr>
</tbody>
</table>

3.3.9. Сколько монографий, патентов, публикаций, входящих в Перечень ВАК есть по АСК-анализу?

По проблематике АСК-анализа издано 26 монографий [1-26] (еще несколько в стадии подготовки к печати), получено 30 патентов на системы искусственного интеллекта, их подсистемы, режимы и приложения, издано около 240 статей в изданиях, входящих в Перечень ВАК РФ. В одном только Научном журнале КубГАУ (входит в Перечень ВАК РФ с 26-го марта 2010 года) автором АСК-анализа и разработчиком системы «Эйдос» проф. Е. В. Луценко опубликовано: 212, общим объёмом 380,997 у.п.л., в среднем 1,797 у.п.л. на одну статью. 11.

3.3.10. В каких областях и где уже применялись АСК-анализ и система «Эйдос»?

Анализ приведенных выше грантов, диссертаций и публикаций позволяет констатировать, что АСК-анализ успешно применяется в следующих предметных областях и научных исследованиях:
- региональная экономика;
- отраслевая экономика;
- экономика предприятий;
- технические науки – интеллектуальные системы управления в возобновляемой энергетике;
- технические науки – мелиорация и управление мелиоративными системами;
- психология личности;
- психология экстремальных ситуаций;
- психология профессиональных и учебных достижений;
- медицинская диагностика;
- прогнозирование результатов применения агroteхнологий;
- принятие решений по выбору рациональных агroteхнологий;
- геофизика: прогнозирование землетрясений;
- геофизика: прогнозирование параметров магнитного поля Земли;
- геофизика: прогнозирование движения полюсов Земли.

На рисунке ниже представлены использование системы «Эйдос» в различных странах мира, причем в основном, к сожалению, не в России (рисунок 4):

Рисунок 4а. Фрагмент базы данных системы «Эйдос» с информацией о запусках системы «Эйдос» в мире за период с 12.11.2016 по 20.07.2019
Вместо пояснения по рисунку приведем ниже экранную форму помощи по режиму, обеспечивающему отображение на карте мира и в базе данных информации о запусках системы «Эйдос» (рисунок 5):

Рисунок 4б. Карта и база данных системы «Эйдос» с информацией о запусках системы «Эйдос » в мире за период с 09.12.2016 по 20.07.2019

Рисунок 5. Экранныя форма Help по режиму 6.9 системы «Эйдос»:
Исследования по некоторым из перечисленных направлений мы постараемся отразить в данной работе.

Две монографии проф. Е. В. Луценко размещены в библиотеке конгресса США [5, 18]:

3.3.11. В каких областях может применяться АСК-анализ?

По мнению авторов АСК-анализ, как метод искусственного интеллекта, может успешно применяться во всех областях, в которых для решения своих профессиональных задач специалист использует свой естественный интеллект, при этом АСК-анализ выступает в качестве инструмента, многократно увеличивающего возможности естественного интеллекта.

АСК-анализ может применяться во всех предметных областях, где ученый или практики решает свои профессиональные задачи и проблемы, постоянно развивает свои знания, используя новейшие достижения в сфере искусственного интеллекта.

Главный вывод: автоматизированный системно-когнитивный анализу присущи все основные признаки нового перспективного междисциплинарного научного направления в рамках автоматизированного системного анализа.

3.3.12. Internet-ссылки по АСК-анализу

Интернет-ссылки по АСК-анализу лучше всего представлены на сайте проф. Е. В. Луценко: [http://lc.kubagro.ru/]. Данный сайт посетило уже более 500000 посетителей с уникальными IP-адресами.

3.3.13. О плагиаторах, использующих работы по АСК-анализу, находящиеся в Internet в открытом доступе

Все авторы научных работ по АСК-анализу всегда размещали и размещают их в свободном открытом бесплатном доступе, чем не преминули воспользоваться плагиаторы. Лучше всего их деятельность описана в статье «Групповой плагиат: от студента до министра» 12. Чтобы найти многочисленные «труды» плагиаторов, включая диссертации, достаточно в любой поисковой системе Internet сделать запрос, например: «Коэффициенты эмерджентности Хартли, Харкевича, Шеннона», которые автор системной теории информации (СТИ) проф. Е. В. Луценко назвал так в честь этих выдающихся ученых в области теории информации. При этом автор следовал сложившейся научной традиции называть единицы измерения и математические выражения в честь выдающихся ученых (Ом, Джоуль, Ватт, Ньютон, Тесла и т.д.). Причем часто плагиаторы даже не понимают, что сами основоположники и классики теории информации не предлагали этих коэффициентов, а предложены они были в работах проф. Е. В. Луценко [5] 13. Наверное, поэтому они и не считают нужным делать ссылки и пишут, например:

1. «По Харкевичу коэффициент эмерджентности определяет степень детерминированности схемы…» (подчеркнуто нами, авт., в цитате сохранены орфографические ошибки плагиатора).

2. «Отсюда строится системная численная мера количества информации в ИС на основе оценки эмерджентности системы (по Хартли и Харкевичу)» (выделено плагиатором).


Эти фразы легко найти в Internet. Здесь автор не считает нужным уделять вопросу о плагиате большого внимания. Отметим лишь, что эта плагиаторская деятельность не просто продолжается, а даже набирает обороты.

3.4. Описание открытой масштабируемой интерактивной интеллектуальной on-line среды для обучения и научных исследований на базе АСК-анализа и системы «Эйдос»

3.4.1. Структура и функции открытой масштабируемой интерактивной интеллектуальной on-line среды «Эйдос»

Основной функцией открытой масштабируемой интерактивной интеллектуальной on-line среды «Эйдос» (ИС «Эйдос») является предоставление разработчикам облачных Эйдос-приложений, их пользователям и учащимся бесплатной возможности обучения интеллектуальным технологиям (на примере АСК-анализа и системы «Эйдос») и их применению в самых различных предметных областях для решения широкого круга задач идентификации (классификации, распознавания, диагностики, прогнозирования), поддержки принятия решений по управлению сложными системами, и научного исследования предметной области путем исследования ее системно-когнитивной модели.

Структура ИС «Эйдос» обеспечивает поддержку ее основной функции и других обеспечивающих функций и включает два сайта разработчика АСК-анализа и системы «Эйдос», а также саму систему «Эйдос».

Рассмотрим их подробнее, на сколько это возможно в рамках одной статьи.

3.4.2. Сайт проф. Е. В. Луценко

Сайт проф. Е. В. Луценко (http://lc.kubagro.ru/) предназначен для бесплатного:
– предоставления всем заинтересованным лицам максимально полной информации по теоретическим основам АСК-анализа (http://lc.kubagro.ru/aidos/index.htm);
– предоставления всем заинтересованным лицам максимально полной информации по практическому применению программного инструментария АСК-анализа – интеллектуальной системы «Эйдос» (http://lc.kubagro.ru/aidos/_Aidos-X.htm статьи в открытом доступе по этой проблематике);
– скачивания самой системы «Эйдос» со встроенными учебными приложениями и без них, а также обновлений вместе с реальными исходными текстами системы (http://lc.kubagro.ru/aidos/_Aidos-X.htm);

### 3.4.2.1. Главная страница сайта

Главная страница сайта имеет адрес: [http://lc.kubagro.ru/](http://lc.kubagro.ru/) и приведена на рисунке 6:


### 3.4.2.2. Монографии в полном открытом бесплатном доступе

имеющих непосредственное отношение к АСК-анализу и системе «Эйдос»

3.4.2.3. Ссылки на статьи в Научном журнале КубГАУ и материалы на образовательном портале

3.4.2.4. Скачивание системы «Эйдос» и обновлений с сайта автора и облачных дисков
Инструкция по скачиванию и установке системы «Эйдос» (объем около 120 Мб)
Система не требует инсталляции, не меняет никаких системных файлов и содержимого папок операционной системы, т.е. является портативной (portable) программой. Но чтобы она работала необходимо аккуратно выполнить следующие пункты.
1. Скачать самую новую на текущий момент полную версию системы «Эйдос-Х++» (около 120 Мб) с сайта разработчика по ссылкам:
(ссылки для обновления системы даны в режиме 6.2).
Компактный вариант: без лабораторных работ, возможности создания новых языковых баз и базы лемматизации:
В режиме 1..4 в качестве текущего может быть задан русский язык (по умолчанию) или любой другой (без иероглифов), перевод на который с русского обеспечивает https://translate.google.ru/.
2. Разархивировать этот архив в любую папку с правами на запись с коротким латинским именем и путем доступа, включающим только папки с такими же именами (лучше всего в корневой каталог какого-нибудь диска).
3. Запустить систему. Файл запуска: __AIDOS-X.exe.
4. Задать имя: 1 и пароль: 1 (потом их можно поменять в режиме 1.2).
5. Перед тем как запустить новый режим НЕОБХОДИМО ЗАВЕРШИТЬ предыдущий (Help можно не закрывать). Окна закрываются в порядке, обратном порядку их открытия.


Если библиотеки (*.DLL) системы «Эйдос-Х++» расположены в папке, на которую прописан путь поиска (скачиваются по п.1), то вместо выполнения пунктов 1,2,3 можно просто запускать файл: «___START_AIDOS-X.exe» и он сам все скачает, развернет и даже запустит систему «Эйдос-Х++. Кроме того, этот модуль подсчитывает контрольную сумму исполняемого модуля системы «Эйдос» __AIDOS-X.exe, и если, ее нет в текущей папке системы, то записывает ее (в виде файла: (c:\Aidos-X\CheckSum.txt), а если есть, то сравнивает их. Если эти суммы совпадают, то просто запускается скачивание обновлений системы (если они есть), а если контрольные суммы не совпадают, то выдается сообщение о том, что исполняемый модуль системы несанкционированно модифицирован (скорее всего вирусами) и ее работоспособность не гарантируется.

При запуске программы ___START_AIDOS-X.exe система «Эйдос-Х++» не должна быть запущена, т.к. она содержится в файле обновлений и при его разархивировании возникнет конфликт, если система будет запущена.

1. Программа ___START_AIDOS-X.exe определяет дату исполняемого модуля системы «Эйдос» в текущей папке: __AIDOS-X.exe и дату обновлений на FTP-сервере разработчика не скачивая их, и, если исполняемый модуль системы «Эйдос» в текущей папке устарел, то скачивает минимальные обновления Downloads.exe объемом около 10 Мб. Если же в текущей папке вообще нет исполняемого модуля системы «Эйдос»: __AIDOS-
X.exe, то программа ___START_AIDOS-X.exe скачивает полную инсталляцию системы «Эйдос» объемом около 217 Мб в виде самораспаковывающегося архива Update.exe.

2. После завершения процесса скачивания появляется диалоговое окно с сообщением, что надо сначала разархивировать систему, заменяя все файлы (опция: «Yes to All» или «OwerWrite All»), и только затем закрыть данное окно.

3. Потом программа ___START_AIDOS-X.exe запускает скачанные обновления на разархивирование. После окончания разархивирования окно архиватора с отображением стадии процесса исчезает.

4. После закрытия диалогового окна с инструкцией (см. п.2), происходит запуск обновленной версии системы «Эйдос» на исполнение.


Примечания:
1. Если ___START_AIDOS-X.exe запускается в папке с уже ранее установленной системой устаревшей версии, то при разархивировании будут возникать конфликты при попытке разархивирования библиотек (DLL-файлов), которые используются самим модулем___START_AIDOS-X.exe. Поэтому, если мы хотим их обновить, надо выйти из этого модуля и
разархивировать скачанный архив Update.exe, запустив его вручную. Если этого не делать, то просто останутся предыдущие версии библиотек. Так что достаточно один раз сделать это вручную или поместить библиотеки в папку, на которую прописан путь доступа.
2. Если Вам не нужны лабораторные работы, то можно удалить папку: ..:\Aidos-X\AID_DATA\LabWorks\. На работу остальных функций системы это не повлияет, а размер директории с системой заметно сократится.

Лицензия:
Автор отказывается от какой бы то ни было ответственности за Ваш выбор или не выбор системы «Эйдос» и последствия применения или не применения Вами системы «Эйдос».
Проще говоря, пользуйтесь если понравилось, а если не понравилось – не пользоваться: решайте сами и сами же несите ответственность за Ваше решение.

PS
1. Еще считаю важным отметить, что система «Эйдос-X++» создавалась автором проф. Е.В. Луценко не как программный продукт, т.е. не на продажу, а для применения в учебном процессе и для научных исследований. Поэтому она не соответствует требованиям к программному продукту. Этим обусловлен и выбор языка программирования, который был таким образом, чтобы легче было использовать огромные наработки: исходные тексты DOS-версии системы «Эйдос» ver.12.5 (если бы ставилась цель создать программный продукт, то наверное был бы выбран язык JAWA).
2. Персональная открытая масштабируемая мультиязычная интерактивная интеллектуальная on-line среда для обучения и научных исследований на базе АСК-анализа и системы «Эйдос»
3. Картографическая визуализация мест расположения пользователей, запускавших систему «Эйдос»:
http://aidos.byethost5.com/map3.php (unikальные IP-адреса, только метки),
http://aidos.byethost5.com/map4.php (unikальные IP-адреса, метки с надписями),
http://aidos.byethost5.com/map5.php
(все IP-адреса, кластеры).
В режиме 6.9. системы «Эйдос» эта визуализация доступна в виде базы данных, а также на карте все посещения или запуски в заданном диапазоне дат. Но для работы этого режима необходимо, что на компьютере не был заблокирован FTP.
В упрощенном (текстовом) виде без фильтра по датам базу посещений можно посмотреть по ссылке:
http://aidos.byethost5.com/test_strings.txt

3.4.3. Интеллектуальная система «Эйдос»
(функции и структура)

Структура и функции универсальной когнитивной аналитической системы "Эйдос-X++" версии от 19.09.2019 (показана глубина диалога главного меню, т.е. без меню, кнопок и переключателей на экранных формах).

'1. Администрирование' 'Подсистема администрирования'
 '1.1. Авторизация ' F1_1() 'Авторизация сисадмина, администратора приложения или пользователя'
 '1.2. Регистрация администратора приложения ' F1_2()
 'Регистрация и удаление регистрации администраторов приложений и задание паролей пользователей. Этот режим доступен только системному администратору и администраторам приложений.'
 '1.3. Диспетчер приложений ' F1_3() 'Это подсистема администрирования приложений. Она предназначена для создания новых приложений, как пустых, так и на основе учебных примеров (лабораторных работ), имеющихся в системе, а также для выбора приложения для работы из уже имеющихся и удаления приложения. Выбор приложения для работы осуществляется путем отметки его любым символом. Удалять любые приложения разрешается только сисадмину, а Администратору приложений - только те, которые он сам создал.'
 '1.4. Multi-language support' F1_4() 'Данный режим обеспечивает: 1) задание текущего языка интерфейса (по умолчанию - русский); 2) корректировку локальной языковой
базы данных по текущему языку (улучшение перевода); 3) объединение локальных и облачных языковых баз данных'

'1.5. Задание путей на папки с группами приложений' F1_5()
'Папки с различными группами приложениями могут быть на локальном компьютере, в локальной сети или в Internet. Пути на них задаются сисадмином при инсталляции системы и могут быть изменены им когда угодно. Один из этих путей, а именно первый из отмеченных специальных символов, считается текущим и используется при СОЗДАНИИ приложений в диспетчере приложений 1.3, а в последующем при запуске приложений на исполнение пути берутся уже из БД диспетчера приложений'

'1.6. Задание цветовой схемы главного меню' F1_6()
'Задается по умолчанию если в папке с системой нет файла: ColorSch.arx при инсталляции системы, но может быть изменена когда угодно сисадмином'

'1.7. Задание размера главного окна в пикселях' F1_7()
'Задается по умолчанию 1024 x 769 если в папке с системой нет файла: _MainWind.arx при инсталляции системы, но может быть изменена когда угодно сисадмином'

'1.8. Задание градиентных фонов главного окна' F1_8()
'Градиентные фоны главного окна задаются по умолчанию при инсталляции системы, но могут быть изменены когда угодно сисадмином'

'1.9. Прописывание путей по фактическому положению' F1_9()
'Доступно только сисадмину. Определяет фактическое месторасположение системы и приложений и прописывает пути на них в БД: PathGrAp.DBF и Appls.dbf, а также восстанавливает имена приложений в Appls.dbf на данные им при их создании'

'1.10. Экспериментальная графика Роджера' DC_Graph()
'Графика Роджера. Операции с графикой на основе манипулирования массивами. Определение характеристик пикселя.'

'1.11. Локализация и инициализация (сброс) системы' F1_11()
'Доступно только сисадмину. Прописывает все пути по фактическому месторасположению системы, пересоздает общесистемные базы данных, удаляет все приложения и всех пользователей. Определяет фактическое месторасположение
системы и приложений, удаляет все директории приложений с поддиректориями и всеми файлами в них, а затем прописывает все пути на них по фактическому месторасположению, т.е. пересоздает и переиндексирует БД: PathGrAp.DBF, Appls.dbf и Users.dbf'

'1.12. Режим специального назначения ' F1_12()
'Комментарий: "Без комментариев"

'2. Формализация предметной области' 'Разработка классификационных и описательных шкал и градаций и формирование обучающей выборки'

'2.1. Классификационные шкалы и градации ' F2_1("Close") 'Ручной ввод-корректировка классификационных шкал и градаций'

'2.2. Описательные шкалы и градации ' F2_2("Close") 'Ручной ввод-корректировка описательных шкал и градаций'

'2.3. Ввод обучающей выборки"'

'2.3.1. Ручной ввод-корректировка обучающей выборки ' F2_3_1()'

'2.4. Просмотр эвентологических баз данных ' F2_4()
'Просмотр эвентологических баз данных (баз событий), в которых исходные данные закодированы с помощью классификационных и описательных шкал и градаций и представлены в форме кодов событий, между которыми существуют причинно-следственные связи'

'2.3.2. Программные интерфейсы с внешними базами данных' 'Автоматизированная формализация предметной области'

'2.3.2.1. Импорт данных из текстовых файлов ' F2_3_2_1()
'Универсальный программный интерфейс ввода данных из TXT, DOC и Internet (HTML) файлов неограниченного объема. Атрибуция текстов, АСК-анализ мемов'

'2.3.2.2. Универсальный программный интерфейс импорта данных в систему' F2_3_2_2(""") 'Режим представляет собой УНИВЕРСАЛЬНЫЙ ПРОГРАММНЫЙ ИНТЕРФЕЙС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ И ИМПОРТА ДАННЫХ В СИСТЕМУ "ЭЙДОС-Х". Данный программный интерфейс обеспечивает автоматическое формирование классификационных и описательных шкал и градаций и обучающей выборки на основе XLS, XLSX или DBF-файла с
исходными данными стандарта, описанного в Help режима. Кроме того он обеспечивает автоматический ввод распознаваемой выборки из внешней базы данных. В этом режиме может быть до 1000000 объектов обучающей выборки до 1500 шкал.'

'2.3.2.3. Импорт данных из транспонированных внешних баз данных ' F2_3_2_3() 'Режим представляет собой ПРОГРАММНЫЙ ИНТЕРФЕЙС ФОРМАЛИЗАЦИИ ПРЕДМЕТНОЙ ОБЛАСТИ И ИМПОРТА ДАННЫХ В СИСТЕМУ "ЭЙДОС-Х". Данный программный интерфейс обеспечивает автоматическое формирование классификационных и описательных шкал и градаций и обучающей выборки на основе XLS, XLSX или DBF-файла с исходными данными стандарта, описанного в Help режима стандарта, представляющего собой ТРАНСПОНИРОВАННЫЙ файл стандарта режима 2.3.2.2. Кроме того они обеспечивает автоматический ввод распознаваемой выборки из внешней базы данных. В этом режиме может быть до 1000000 шкал и до 1500 объектов обучающей выборки.'

'2.3.2.4. Оцифровка изображений по внешним контурам ' F2324ok() 'Данный режим обеспечивает оцифровку изображений по внешним контурам, т.е. кодирование и ввод в систему "Эйдос" изображений и формирование файла исходных данных "Inp_data" в стандарте режима 2.3.2.2 в котором каждое изображение представлено строкой'

'2.3.2.5. Оцифровка изображений по всем пикселям и спектру' F2_3_2_5() 'Данный режим обеспечивает оцифровку изображений по всем пикселям и спектру, т.е. кодирование и ввод в систему "Эйдос" изображений и формирование файла исходных данных "Inp_data" в стандарте режима 2.3.2.3 в котором каждое изображение представлено столбцом'

'2.3.2.6. Сценарный ACK-анализ символьных и числовых рядов' F2_3_2_6() 'Режим обеспечивает импорт данных из DOS-TXT-рядов чисел (цифр) и слов (букв), а также генерацию рядов для расчета асимптотического информационного критерия качества шума, отражающего степень выраженности закономерностей в предметной области. Это позволяет применить сценарный метод ACK-анализа для исследования
временных рядов и каузальные зависимостей будущих сценариев изменения величины от прошлых'

'2.3.2.7. Транспонирование файлов исходных данных ' F2_3_2_7() 'Данный режим обеспечивает транспонирование базы данных Inp_data.xls и ее запись в виде файла Out_transp.xls'

'2.3.2.8. Объединение нескольких файлов исходных данных в один ' F2_3_2_8() 'Данный режим обеспечивает объединение нескольких одинаковых по структуре баз данных с именами вида: "Input###.xls", где: "###" - номер файла вида: 0001,0002,...,9999, в один файл с именем: "Add_data.xls"

'2.3.2.9. Разбиение TXT-файла на файлы-абзацы"' F5_11() 'Данный режим обеспечивает: обнаружение в папке: ../AID_DATA/INP_DATA/ TXT-файлов, загрузку этих файлов, нахождение в них абзацев, запись этих абзацев в виде TXT-файлов с именами вида: "#####, <ИМЯ TXT-ФАЙЛА>" из сквозного номера абзаца ####### и имени исходного TXT-файла'

'5.3.2.10.Чемпионат RAIF-Challenge 2017-API-bank' F2_3_2_10() 'Создание БД Inp_data.dbf из файлов: t1.xlsx, t2.xlsx, t3.xlsx, t4.xlsx'

'2.3.2.11.Чемпионат RAIF-Challenge 2017-API-retail' F2_3_2_11() 'Создание БД Inp_data.dbf и файла: Inp_name.txt соответственно из файлов:jet_raif_challenge.csv и description.csv'

'2.3.2.12. Прогнозирование землетрясений методом Н.А.Чередниченко' F2_3_2_12() 'Создание БД Inp_data.dbf из файлов: "Input1.xls" и "Input2.xls" и создание модели для прогнозирования землетрясений методом Натальи Алексеевны Чередниченко (г.Владивосток, Россия)'

'2.3.3. Управление обучающей выборкой'

'2.3.3.1. Параметрическое задание объектов для обработки ' Razrab()'

'2.3.3.2. Статистическая характеристика, ручной ремонт ' Razrab()'

'2.3.3.3. Автоматический ремонт обучающей выборки ' Razrab()'

'2.3.3.4. Распределение объектов обуч. выборки по классам' F2_3_3_4() 'Формирование отчета о распределении объектов обучающей выборки по классам'
2.3.4. Декодирование сочетаний признаков в обучающей выборке Razrab()

3. Синтез, верификация и улучшение модели' Создание модели, повышение ее качества и оценка достоверности'

3.1. Ускоренный синтез всех моделей F3_1() 'Ускоренный синтез всех статистических и системно-когнитивных моделей: {Abs, Prc1, Prc2, Inf1, Inf2, Inf3, Inf4, Inf5, Inf6, Inf7}''

3.2. Верификация всех моделей на GPU F3_2(.T.) 'Верификация всех статистических и системно-когнитивных моделей: {Abs, Prc1, Prc2, Inf1, Inf2, Inf3, Inf4, Inf5, Inf6, Inf7} на графическом процессоре (GPU) с использованием параллельных вычислений''

3.3. Синтез и верификация всех моделей на GPU F3_3() 'Ускоренный синтез и верификация всех статистических и системно-когнитивных моделей: {Abs, Prc1, Prc2, Inf1, Inf2, Inf3, Inf4, Inf5, Inf6, Inf7} на графическом процессоре (GPU) с использованием параллельных вычислений''

3.4. Анализ достоверности моделей с двумя инт.kритериями F3_4() 'Оценивается достоверность (адекватность) заданных стат.моделей и моделей знаний. Для этого осуществляется синтез заданных моделей, обучающая выборка копируется в распознаваемую и в каждой заданной модели проводится распознавание с использованием двух интегральных критериев, подсчитывается количество верно идентифицированных и не идентифицированных, ошибочно идентифицированных и не идентифицированных объектов (ошибки 1-го и 2-го рода)''

3.5. Синтез и верификация заданных из 10 моделей F3_5(.T.) 'Оценивается достоверность (адекватность) заданных стат.моделей и моделей знаний. Для этого осуществляется синтез заданных моделей, обучающая выборка копируется в распознаваемую и в каждой заданной модели проводится распознавание с использованием двух интегральных критериев, подсчитывается количество верно идентифицированных и не идентифицированных, ошибочно идентифицированных и не идентифицированных объектов (ошибки 1-го и 2-го рода)''

3.6. Синтез и верификация заданной группы моделей Razrab() 'В различных приложениях текущей группы приложений создается и верифицируются модели: Abs, Prc1, Prc2, Inf1~Prc1,
Inf2~Prc2, Inf3-хи-квадрат, Inf4-roi~Prc1, Inf5-roi~Prc2, Inf6-Dp~Prc1, Inf7-Dp~Prc2 с фиксированными и адаптивными интервалами со сценариями и без и для каждого класса определяется модель, в которой его идентификация осуществляется наиболее достоверно'

'3.7. Повышение качества модели''

'3.7.1. Поиск и удаление артефактов (робастная процедура) ' F3_7_1()'Строится частотное распределение абсолютных частот встреч признаков в классах по матрице сопряженности Abs.dbf и пользователю предоставляется возможность удалить редко встречающиеся факты (сочетания), как случайные выбросы или артефакты. Для работы профессиональной графики нужна MS Windows 7 или выше'

'3.7.2. Значимость классификационных шкал ') F3_7_2(),'В данном режиме классификационные шкалы ранжируются в порядке убывания значимости, т.е. средней значимости их градаций (степени детерминированности классов). Детерминированность класса - это вариабельность значений частных критериев статистических баз и баз знаний'

'3.7.3. Степень детерминированности классов (град.класс.школ)') F3_7_3(),'В данном режиме все градации классификационных шкал (классы) ранжируются в порядке убывания степени детерминированности, т.е. вариабельности значений частных критериев статистических и системно-когнитивных моделей'

'3.7.4. Значимость описательных шкал ') F3_7_4(),'В данном режиме описательные шкалы ранжируются в порядке убывания значимости, т.е. средней значимости их градаций, т.е. признаков'

'3.7.5. Значимость градаций описательных шкал (признаков) ') F3_7_5(),'В данном режиме все градации описательных шкал (признаки) ранжируются в порядке убывания значимости, т.е. вариабельности значений частных критериев статистических и системно-когнитивных моделей')

'3.7.6. Разделение классов на типичную и нетипичную части ' F3_7_6()'Из файла исходных данных "Inp_data.dbf" стандарта программного интерфейса 2.3.2.2 либо удаляются объекты обучающей выборки, которые привели к ошибкам неидентификации или ложной идентификации, либо для таких
объектов создаются новые классы. В данном режиме используются результаты распознавания.

3.7.7. Генерация подсистем классов и докод.об.и расп.выб. 'F3_7_7()'На основе сочетания классов по 2, 3, N формируются подсистемы классов, которые добавляются в качестве градаций в классификационные шкалы подсистем классов и в объекты обучающей и распознаваемой выборки'

3.7.8. Генерация подсистем признаков и докод.об.и расп.выб.'F3_7_8()'На основе сочетания признаков по 2, 3, N формируются подсистемы признаков, которые добавляются в качестве градаций в описательные шкалы подсистем признаков и в объекты обучающей и распознаваемой выборки'

4. Решение задач с применением модели' 'Применение модели для решения задач идентификации (распознавания), прогнозирования и поддержки принятия решений (обратная задача прогнозирования), а также для исследования моделируемой предметной области путем исследования ее модели'

4.1. Идентификация и прогнозирование'

4.1.1. Ручной ввод-корректировка распознаваемой выборки'F4_1_1()''

4.1.2. Пакетное распознавание в текущей модели'F4_1_2(0,.T.,"4_1_2")'Распознаются по очереди все объекты распознаваемой выборки в стат.модели или базе знаний, заданной текущей в режиме 3.3 или 5.6.'

4.1.3. Вывод результатов распознавания''

4.1.3.1. Подробно наглядно: "Объект - классы" 'F4_1_3_1()'Визуализация результатов распознавания в подробной наглядной форме в отношении: "Один объект - много классов" с двумя интегральными критериями сходства между конкретным образом распознаваемого объекта и обобщенными образами классов: "Семантический резонанс знаний" и "Сумма знаний"

4.1.3.2. Подробно наглядно: "Класс - объекты" 'F4_1_3_2()'Визуализация результатов распознавания в подробной наглядной форме в отношении: "Один класс - много объектов" с двумя интегральными критериями сходства между конкретным образом распознаваемого объекта и обобщенными образами классов: "Семантический резонанс знаний" и "Сумма знаний"
'4.1.3.3. Итоги наглядно: "Объект - класс" 'F4_1_3_3()'Отображение итоговых результатов распознавания в наглядной форме: отображаются пары: "Объект-класс" у которых наибольшее сходство по двум интегральным критериям сходства: "Семантический резонанс знаний" и "Сумма знаний". Приводится информация о фактической принадлежности объекта к классу.'

'4.1.3.4. Итоги наглядно: "Класс - объект" 'F4_1_3_4()'Отображение итоговых результатов распознавания в наглядной форме: отображаются пары: "Класс-объект" у которых наибольшее сходство по двум интегральным критериям сходства: "Семантический резонанс знаний" и "Сумма знаний". Приводится информация о фактической принадлежности объекта к классу.'

'4.1.3.5. Подробно сжато: "Объекты - классы" F4_1_3_5()'В подробной сжатой (числовой) форме приводится информация об уровне сходства всех объектов со всеми классами по двум интегральным критериям сходства: "Семантический резонанс знаний" и "Сумма знаний", а также о фактической принадлежности объекта к классу.'

'4.1.3.6. Обобщ.форма по достов.моделей при разных интегральных крит.' 'Отображаются обобщенные результаты измерения достоверности идентификации по всем моделям и интегральным критериям из БД: Dost_mod.DBF. 'Отображаются частотные распределения уровней сходства верно и ошибочно идентифицированных и неидентифицированных объектов при разных моделях и интегральных критериях'

'4.1.3.7. Обобщ.стат.анализ результатов идент. по моделям и инт.крит.' 'Отображаются результаты общего статистического анализа достоверности идентификации по всем моделям и интегральным критериям из БД: VerModClsIT.dbf. 'Отображаются частотные распределения уровней сходства верно и ошибочно идентифицированных и неидентифицированных объектов при разных моделях и интегральных критериях'

'4.1.3.8. Стат.анализ результат. идент. по классам, моделям и инт.крит.' 'Отображаются результаты статистического анализа достоверности идентификации по всем классам, моделям и интегральным критериям из БД: VerModCls.dbf'

'4.1.3.9. Достоверность идент.объектов при разных моделях и инт.крит.' 'Отображается достоверность идентификации объектов
по klassam (F-mera Van Rizbergena) v razreze po obyektam pri raznyx modelax (t.e. raznyx chastnyx kriteriyax) i pri raznyx integralnyx kriteriyax iz BD: Dost_clsF.dbf. Pozvolяет udelat' iz obuchayushchey v wyborki ploho raspoznavaemye obyekty.'

'4.1.3.10. Dostovernost' ident.klassov pri raznyx modelax i int.krit.' Otobrazayetsя dostovernost' identifikatsii obyektov po klassam (F-mera Van Rizbergena) v razrezе po klassam pri raznyx modelax (t.e. raznyx chastnyx kriteriyax) i pri raznyx integralnyx kriteriyax iz BD: Dost_clsF.dbf''

'4.1.3.11. Ob'edinenie v oйnoj BD strokov po samym dostovernym modelax ' Ob'edinenie v oйnoj BD "AddData.dbf" strokov po naibolee dostovernym modelam iz Dost_modCls, formiremyh v regime 4.1.3.6.'

'4.1.4. Paketnoe raspoznавание в zadannoj gruppе modelей' Razrab()'Raspoznayutsя po ocheredi все obyekty raspoznаваемой wyborki v stat.modele ili base znaniy, zadannoy tekuchey, v всех modelax zadannoj gruppе modelей'

'4.1.5. Dokodirovanie sochetаний признаков в raspoznаваемой wyborkе' Razrab()''

'4.1.6. Račionalnoe nazначение obyektov на klassy (zadacha o ranche)' F4_1_6()'Upravlenie personalom na oйse AСK-analiza i funkcionalno-stoimostnogo analiza (zadacha o naznacheniyax)'

'4.1.7. Interaktivnaya identifikatsiya - posledovatelnyy analiz Val'da' Razrab()''

'4.1.8. Multиrasпoznавание (пакетное распознавание во всех modelях)' Razrab()'При identifikatsii obyekta rasпoznаваемой wyborki s kazdым klassom on сравниvается в той модели, v kotoroy etot klass rasпoznayetsя naibolee dostoverno, kao v sisteme "Эйдос-астра"'


'4.2. Tipologiya klassov i prinятиe решений''

'4.2.1. Informatsionnye portrety klassov' F4_2_1()'Reшение обратной zadachi prognozирования: vyrobnitsa upravlyayushchih
решений. Если при прогнозировании на основе значений факторов оценивается в какое будущее состояние перейдет объект управления, то при решении обратной задачи, наоборот, по заданному целевому будущему состоянию объекта управления определяется такая система значений факторов, которая в наибольшей степени обуславливает переход в это состояние.

4.2.2. Кластерный и конструктивный анализ классов.

4.2.2.1. Расчет матриц сходства, кластеров и конструктов F4_2_2_1().

4.2.2.2. Результаты кластерно-конструктивного анализа F4_2_2_2(). Состояния, соответствующие классам, расположенные около одного полюса конструкта, достижимы одновременно, т.к. имеют сходную систему детерминации, а находящиеся около противоположных полюсов конструкта являются альтернативными, т.е. одновременно недостижимы.

4.2.2.3. Агломеративная древовидная кластеризация классов F4_2_2_3(). Когнитивная кластеризация, путем объединения пар классов в матрице абсолютных частот и пересчет матриц условных и безусловных процентных распределений и системно-когнитивных моделей. Построение и визуализация древовидных диаграмм объединения классов (дендрограмм) в графическом виде.

4.2.2.4. Дивизивная древовидная кластеризация классов F3_7_6(). Кластеризация, путем разделения классов на типичную и нетипичную части пока релизованная в упрощенной форме (по сравнению с DOS-версией системы "Эйдос". Из файла исходных данных "Inp_data.dbf" стандарта программного интерфейса 2.3.2.2 либо удаляются объекты обучающей выборки, которые привели к ошибкам неидентификации или ложной идентификации, либо для таких объектов создаются новые классы. В данном режиме используются результаты распознавания.).

4.2.3. Когнитивные диаграммы классов F4_2_3(). Данный режим показывает в наглядной графической форме какими признаками сходны и какими отличаются друг от друга заданные классы.

4.3. Типологический анализ признаков.
'4.3.1. Информационные портреты признаков' F4_3_1() 'Семантический (смысловой) портрет признака или значения фактора, т.е. количественная характеристика силы и направления его влияния на поведение объекта управления'

'4.3.2. Кластерный и конструктивный анализ признаков'

'4.3.2.1. Расчет матриц сходства, кластеров и конструктов' F4_3_2_1()

'4.3.2.2. Результаты кластерно-конструктивного анализа' F4_3_2_2() 'Признаки или градации факторов, расположенные около одного полюса конструкта, оказывают сходное влияние на объект управления, т.е. на его принадлежность к классам или его переход в состояние, соответствующие классам и могут быть заменены одни другими, а находящиеся около противоположных полюсов конструкта оказывают сильно отличающееся влияние на объект управления и не могут быть заменены одни другими.'

'4.3.2.3. Агломеративная древовидная кластеризация признаков' F4_3_2_3(), 'Когнитивная кластеризация, путем объединения пар признаков в матрице абсолютных частот и пересчет матриц условных и безусловных процентных распределений и системно-когнитивных моделей. Построение и визуализация древовидных диаграмм объединения признаков (дендрограмм) в графическом виде'

'4.3.3. Когнитивные диаграммы признаков' F4_3_3() 'Данный режим показывает в наглядной графической форме какими классами сходны и какими отличаются друг от друга заданные признаки'

'4.4. Исследование предметной области путем исследования ее модели''

'4.4.1. Оценка достоверности обучающей выборки' Razrab() 'Выведение объектов с нарушенными корреляциями между классами и признаками. Выведение очень сходных друг с другом объектов обучающей выборки'

'4.4.2. Оценка достоверности распознаваемой выборки' Razrab() 'Выведение очень сходных друг с другом объектов распознаваемой выборки'

'4.4.3. Измерение адекватности 3 стат.моделей и 7 моделей знаний' Razrab() 'Любой заданной или всех'
4.4.4. Измерение сходимости и устойчивости 10 моделей 'Razrab()'
4.4.5. Зависимость достоверности моделей от объема обучающей выборки 'Razrab()'
4.4.6. Измерение независимости классов и признаков (анализ хи-квадрат) 'Razrab()'
4.4.7. Графические профили классов и признаков 'Razrab()'
4.4.8. Количественный SWOT-анализ классов средствами ACK-анализа 'F4_4_8()' 'ACK-анализ обеспечивает построение SWOT-матрицы (модели) для заданного класса с указанием силы влияния способствующих и препятствующих факторов непосредственно на основе эмпирических данных и поэтому является инструментом автоматизированного количественного SWOT-анализа (прямая задача SWOT-анализа). Классы интерпретируются как целевые и нежелательные состояния фирмы, факторы делятся на внутренние, технологические, описывающие фирму, и внешние, характеризующие окружающую среду, а количество информации, содержащееся в значении фактора, рассматривается как сила и направление его влияния на переход фирмы в те или иные будущие состояния'
4.4.9. Количественный SWOT-анализ факторов средствами ACK-анализа 'F4_4_9()' 'ACK-анализ обеспечивает построение количественной SWOT-матрицы (модели) для заданного значения фактора с указанием степени, в которой он способствует или препятствует переходу объекта управления в различные будущие состояния, соответствующие классам (обратная задача SWOT-анализа). Эта модель строится непосредственно на основе эмпирических данных и поэтому ACK-анализ может рассматриваться как инструмент автоматизированного количественного SWOT-анализа. Факторы делятся на внутренние, технологические, описывающие саму фирму, и внешние, характеризующие окружающую среду'
4.4.10. Графическое отображение нелокальных нейронов 'F4_4_10()' 'Нелокальный нейрон отражает силу и знак влияния значений факторов (рецепторов-признаков) на активацию или торможение нейрона, т.е. на принадлежность или не принадлежность объекта с этими признаками к классу, соответствующему данному нейрону'
4.4.11. Отображение Паретто-подмножеств нелокальной нейронной сети 'F4_4_11(\textbf{\textit{\textit{NeuroNet}}})' 'В этом режиме изображается вместе сразу несколько нелокальных нейронов, которые в режиме 4.4.10 изображались по одному, т.е. Парето-подмножество нелокальной нейронной сети'

4.4.12. Классические и интегральные когнитивные карты 'F4_4_11(\textbf{\textit{\textit{IntCognMaps}}})' 'Это нелокальная нейронная сеть с указанием не только связей между значениями факторов и классов (как в режиме 4.4.11), но и с корреляциями между классами (как в режиме 4.2.2), и корреляциями между значениями факторов (как в режиме 4.3.2)'

4.5. Визуализация когнитивных функций: текущее приложение, разные модели 'F4_5()' 'В данном режиме осуществляется визуализация и запись когнитивных функций, созданных в текущем приложении на основе различных стат.моделей и моделей знаний'

4.6. Подготовка баз данных для визуализации когнитивных функций в Excel 'F4_6()' 'Данный режим готовит базы данных для визуализации в MS Excel прямых и обратных, позитивных и негативных точечных и средневзвешенных редуцированных когнитивных функций, созданных на основе различных стат.моделей и моделей знаний'

4.7. АСК-анализ изображений по пикселям, спектрум и контурам 'F4_7()' 'Данный режим обеспечивает АСК-анализ изображений, как сгенерированных в учебных целях, так и внешних для системы "Эйдос-Х++", относящихся к какой-либо предметной области. АСК-анализ изображений возможен: по пикселям, спектру, по внешним контурам, по внутренним и внешним контурам (в разработке). Кроме того в данном режиме по кнопке "Формирование облака точек" возможна визуализация когнитивных функций, аналогично режимам 4.5 и 4.6. Данный режим интегрирован с Геокогнитивной подсистемой системы "Эйдос" (режим 4.8.)'

4.8. Геокогнитивная подсистема 'F4_8()' 'Обеспечивает восстановление значений функций по признакам аргумента. Преобразует 2D Excel-таблицу с именем "Inp\_map.xls" в файл исходных данных "Inp\_data.dbf", содержащий координаты X,Y,Z точек и их признаки (модель описательной информации
картографической базы данных). Визуализирует исходные данные из БД "Inp_data.dbf" или итоговые результаты распознавания из БД: "Rsp_it.dbf" в картографической форме (сетка и градиентная заливка цветом) с применением триангуляции Делоне. Обеспечивает пакетный ввод и оконтуривание изображений и формирование соответствующих файлов "Inp_data" и др. для создания и применения модели, созданной на основе этих изображений. Режим интегрирован с 4.7.

'5. Сервис' 'Конвертирование, печать и сохранение модели, пересоздание и переиндексация всех баз данных'

'5.1. Конвертер приложения OLD => NEW' F5_1()

'5.2. Конвертер приложения NEW => OLD' F5_2()
'Преобразование модели из стандарта БД системы Эйдос-X++ в стандарт Эйдос-12.5 в папку OldAppls. Все файлы из этой папки надо скопировать в текущую папку системы "Эйдос-12.5", выполнить режимы 7.2 и 2.3.5'

'5.3. Конвертер всех PCX (BMP) в GIF 'Razrab()' 'F5_3()

'5.4. Конвертер результатов расп.для SigmaPlot' F5_4()
'Конвертирует результаты распознавания, т.е. БД Rasp.dbf в параметрическую форму в стиле: "X, Y, Z", удобную для картографической визуализации в системе SigmaPlot. Это возможно, если предварительно были выполнены режимы 3.7.7 и 3.4(3.5.) и 4.1.2.'

'5.5. Просмотр основных БД всех моделей' F5_5()
'Обеспечивает просмотр и экспорт в Excel основных баз данных всех статистических моделей: Abs, Prc1, Prc2 и моделей знаний: Inf1~Prc1, Inf2~Prc2, Inf3-хи-квадрат, Inf4-roi~Prc1, Inf5-roi~Prc2, Inf6-Dp~Prc1, Inf7-Dp~Prc2'

'5.6. Выбрать модель и сделать ее текущей' F5_6(4,.T.,"MainMenu")'Данная функция позволяет выбрать среди ранее рассчитанных в 3-й подсистеме статистических баз Abs, Prc1, Prc2 и моделей знаний INF#, текущую модель для решения
в 4-й подсистеме задач идентификации, прогнозирования, 
приятия решений и исследования предметной области путем 
исследования ее модели'

'5.7. Переиндексация всех баз данных' F5_7() 'Заново создается все необходимые для работы системы индексные массивы общесистемных баз данных (находящихся в папке с 
исполным модулем системы), а также баз данных текущего 
приложения, необходимые для работы с ним'

'5.8. Сохранение основных баз данных модели' Razrab()' ' 
'5.9. Восстановление модели из основных БД' Razrab()' ' 
'5.10. Выгрузка исходных данных в "Inp_data"' F5_10() 
'Данный режим выполняет функцию, обратную универсальному 
программному интерфейсу с внешними базами данных 2.3.2.2(), 
т.е. не вводит исходные данные в систему, а наоборот, формирует 
на основе исходных данных файлы: Inp_data.dbf и Inp_data.txt, на 
основе которых в режиме 2.3.2.2() можно сформировать эту же 
модель'

'5.11. Внешнее управление системой "Эйдос"' F5_11() 
'Данный режим обеспечивает управление системой "Эйдос" в 
реальном времени со стороны внешней программы путем задания 
ею последовательности функций системы "Эйдос" для 
исполнения (по сути программы, написанной на языке "Эйдос") в 
специальной базе данных: "ExternalControl.dbf" и программного 
контроля их исполнения'

'5.12. Печать структур всех баз данных' F5_12() 'Распечатка структур (дatalogических моделей) всех баз данных текущего 
приложения'

'5.13. Редактирование БД лемматизации' F5_13() 'Ввод-
корректировка базы данных лемматизации: "Lemma.dbf"'

'5.14. On-line HELP по лабораторным работам' F5_14() 'On-
line описание лабораторных работ (статьи и с сайта 
автора: http://lc.kubagro.ru/), а также пояснения по смыслу 
частиных и интегральных критериев'

'5.15. Локальные HELP по режимам системы' F5_15() 
'Локальные пояснения по режимам системы "Эйдос", входящие в 
ее исполнимый модуль'

'5.16. Минимизация инсталляции системы' F5_16() '5.16. 
Минимизация инсталляции системы. Удаление из текущей
инсталляции системы локальных лабораторных работ, базы лемматизации, всех языковых баз, кроме текущей, а также SygWin, обеспечивающей on-line генерацию языковых баз. В результате минимизации системы rar-архив папки с системой получается уже не более 220Мб, а около 40Мб. Ранее установленные приложения не затрагиваются. Для удаления приложений служит режим 1.11.'

'6. О системе' ''

'6.1. Информация о системе, разработчике и средствах разработки' F6_1()''

'6.2. Ссылки на патенты, документацию и текущую версию системы ' F6_2() 'Internet-ссылки на патенты, монографии, учебные пособия, научные статьи и самую новую (на текущий момент) версию системы "Эйдос-X++", а также полный комплект документации на нее одним файлом''

'6.3. Карта системы (дерево диалога) ' Razrab()'

'6.4. Порядок преобразования данных в информацию, а ее в знания' F6_4() 'В режиме раскрывается соотношение содержания понятий: "Данные", "Информация" и "Знания", а также последовательность преобразования данных в информацию, а ее в знания в системе "Эйдос-X++" с указанием имен баз данных и ссылками на основные публикации по этим вопросам'

'6.5. Графическая заставка системы "Эйдос-12.5" ' F6_5()''

'6.6. Roger Donnay, Professional Developer, Developer eXPress++' F6_6() 'Roger Donnay, профессиональный разработчик программного обеспечения, разработчик высокоэффективной инструментальной системы программирования eXPress++, широко использованной при создании системы "Эйдос-X++". Roger Donnay, Professional Developer, Developer eXPress++'

'6.7. Логотипы мультимоделей ' F6_7()''

'6.8. Свидетельство РосПатента РФ на систему "Эйдос-X++" ' F6_8()''

'6.9. География пользователей системы "Эйдос-X++" F6_9() 'Когда кто-либо в мире запускает систему "Эйдос-X++" на исполнение на компьютере, подключенном к Internet, то на она программно обращается к специально созданному сайту, на котором размещен PHP-код, определяющий дату и время обращения, а также IP-адрес компьютера, с которого произошло
это обращение, и по нему определяет страну, регион и город пользователя. Вся эта информация отображается в текстовой, табличной и картографической форме

'7. Выход' F7()'Закрыть все базы данных и корректно выйти из системы'

Необходимо отметить, что все эти режимы, за исключением подсистемы администрирования и диспетчера приложений, были реализованы в предыдущей версии системы "Эйдос" и системах окружения. В текущей версии системы «Эйдос-X++» пока реализованы не все режимы системы «Эйдос», версии 12.5 (это последняя версия системы «Эйдос» под MS DOS от июня 2012 года). Такие режимы отмечены как разрабатываемые; Razrab(). Система непрерывно совершенствуется автором.

3.4.4. Локальные встроенные учебные и научные Эйдос-приложения

Система «Эйдос» имеет 31 встроенное учебное приложение (лабораторные работы), которые можно использовать на компьютере пользователя без наличия Internet. Правда если нет Internet то они будут без описаний, т.к. описания берутся с сайта автора или Научного журнала КубГАУ. Эти приложения находятся в архивах полной инсталляции системы, которые скачиваются по приведенным выше ссылкам.

На рисунке 7 приведен перечень встроенных локальных лабораторных работ/

Как правило, лабораторная работа снабжена описанием, которое представляет собой либо раздел учебного пособия, размещенного на сайте автора, либо статью, размещенную на сайте Научного журнала КубГАУ. Описание лабораторной работы загружается при клике на кнопке: «Теория по лаб. раб. №###».

Установка локальных (встроенных) лабораторных работ осуществляется в диспетчере приложений (режим 1.3).
Рисунок 7. Перечень встроенных локальных лабораторных работ системы «Эйдос»

3.4.5. Учебные и научные облачные Эйдос-приложения

В системе «Эйдос» в диспетчере приложений (режим 1.3) есть возможность:

– скачивания из облака размещенных там и установки разнообразных интеллектуальных приложений (автор называет их облачными Эйдос-приложениями);

– записи в облако текущего приложения, установленного в системе «Эйдос», если исходные данные по нему находятся в папке: ..\Aidos-X\AID_DATA\Inp_data;

– обсуждения выбранного облачного Эйдос-приложения.

На рисунке 8 приведена экранная форма Help к режимам работы с облачными Эйдос-приложениями:
Рисунок 8. Экранная форма Help к режимам диспетчера приложений (1.3) работы с облачными Эйдос-приложениями

3.4.5.1. Анализ и картографическая визуализация запусков системы «Эйдос» в мире

Для определения IP-адреса компьютера, с которого запущена система «Эйдос», даты и времени запуска, а также (по IP-адресу) домена, страны, округа, региона, города, почтового индекса, временного пояса и географических координат места запуска, автором был зарегистрирован бесплатный хостинг http://aidos.byethost5.com с поддержкой FTP и PHP и на этом хостинге размещены PHP и JAVA скрипты, приведенные ниже.

JAVA-скрипт (map4.php)

```php
<?php
$content = file_get_contents("map4_strings.txt");
$content = explode("\r\n", $content);
foreach ($content as $key=>$record) {
```

14 За разработку этого скрипта автор выражает благодарность начальнику Центра информационных технологий КубГАУ к.т.н., доценту А.С.Креймеру: http://kubsau.ru/education/chairs/comp-system/staff/3395/
$content[$key] = explode(",", $record);
}
?>
<meta charset="utf-8">
<title>AIDOS map</title>
<link href="styles.css" rel="stylesheet" type="text/css">
<meta name="viewport" content="width=device-width, initial-scale =
1.0, user-scalable = no">
<script
src="https://api-maps.yandex.ru/2.1/?lang=ru_RU"
type="text/javascript"></script>
<script type="text/javascript">
var aMap;
ymaps.ready(function(){
aMap = new ymaps.Map("main", {
center: [29.00, 7.00],
zoom: 3.3
});
aMap.container.fitToViewport();
// Создаем геообъект с типом геометрии "Точка".
gObj = new ymaps.GeoObject({
// Описание геометрии.
geometry: {
type: "Point",
coordinates:
[<?=$content[0][10];?>,
<?=$content[0][11];?>]
},
// Свойства.
properties: {
// Контент метки.
iconContent:
'<?=$content[0][0].",
".$content[0][1];?>',
hintContent: '<?=$content[0][2];?>'
}
}, {
// Опции.
// Иконка метки будет растягиваться под размер ее
содержимого.
preset: 'islands#blackStretchyIcon',
});
aMap.geoObjects
.add(gObj)
<?php
for ($i = 1; $i<count($content);$i++){
echo
".add(new
ymaps.Placemark(["
.
$content[$i][10].",".$content[$i][11]."], {";
echo
"
iconContent:
'".$content[$i][0].",
".$content[$i][1]."',";
echo " hintContent: '".$content[$i][2]."'}, {
preset: 'islands#blackStretchyIcon' }))";
}
?>
});

221


PHP-скрипт (index.php):


В текстовом виде без фильтра по датам базу запусков системы «Эйдос» можно посмотреть по ссылке: http://aidos.byethost5.com/test_strings.txt. Эти же показатели всех
запусков системы “Эйдос” отображаются в экранной форме, приведенной на рисунке 9:

Рисунок 9. Экранная форма отображения информации о географии пользователей и разработчиков Эйдос-приложений

JAVA-скрипты предназначены для отображения Яндекс-карты запусков системы «Эйдос» в мире в разных вариантах:
единаковые IP-адреса без надписей на метках (рисунок 10);
единаковые IP-адреса с надписями на метках даты и времени обращения (рисунок 11);
Все IP-адреса запусков за заданный период времени с надписями на метках даты и времени обращения (рисунок 12);
– Все IP-адреса запусков за весь период времени в виде кластеров (рисунок 13).

Рисунок 10. Яндекс-карта запусков системы «Эйдос» в мире с метками без надписей IP-адреса и времени обращения по состоянию на 20.07.2019
(ссылка: http://aidos.byethost5.com/map3.php)

Алгоритм анализа и картографическая визуализация запусков системы «Эйдос» в мире


2. На этом сайте определяется IP-адрес компьютера, с которого запущена система «Эйдос», дата и время запуска, а также (по IP-адресу) домен, страна, округ, регион, город, почтовый индекс, временной пояс и географические координаты места запуска.

3. В текстовый файл: “test_strings.txt” на указанном хостинге добавляется строка с информацией, определенной на предыдущем шаге (в формате CSV).

4. При запуске в системе «Эйдос» режима «6.9. География пользователей системы "Эйдос-Х++"» проверяется, есть ли на компьютере FTP, и, если есть, с хостинга
http://aidos.byethost5.com по FTP скачивается текстовый файл: “test_strings.txt” с информацией о запусках системы «Эйдос».


6. Преобразование файла “test_strings.txt” из CSV-формата в DBF (в базу данных «Visitors.DBF»).

7. Отображение базы данных «Visitors.DBF» в виде экранной формы, представленной на рисунке 9.

8. При кликах по кнопкам из групп: «Карта посещений» на хостинге запускаются на исполнение JAVA-скрипты, обеспечивающие соответствующий вариант картографической визуализации мест запуска системы «Эйдос», приведенные на рисунках 10, 11, 12.

При клике на кнопке «Диапазон дат» выводится экранная форма, позволяющая задать этот диапазон,

а затем производится удаление из базы данных «Visitors.DBF» всех записей, не попадающих в этот диапазон, преобразование в текстовый файл CSV-формата «map_strings.txt» с такой же структурой записей, как у файла “test_strings.txt”, запись его по FTP на хостинг и запуск на отображение (рисунок 12).

По картам, представленным на рисунках 10 и 11 видно, что на Европу и США приходится примерно столько же запусков системы «Эйдос», сколько на Россию.

В заключение приведем Help по режиму 6.9 (рисунок 14):

15 Для работы режима необходим FTP-доступ, не заблокированный политиками безопасности, брандмауэрами, антивирусными программами и т.п.
3.4.5.2. Запись Эйдос-приложений в облако
Система "Эйдос" обеспечивает запись на хостинг: http://aidos.byethost5.com/ исходных данных текущего приложения, находящихся в папке: ..\Aidos-X\AID_DATA\Inp_data\. Это могут быть и файлы: Inp_data.xls(x), и графические файлы (bmp, jpg) для подсистемы АСК-анализа изображений, и doc- pdf-файлы списаниями приложения. Ясно, что эти файлы есть не у всех приложений. Если папка ..\Aidos-X\AID_DATA\Inp_data\ пуста, то запись приложения в облако не производится.

Выход на режим записи приложения в облако осуществляется из диспетчера приложений: режима 1.3 (рисунок 15) путем клика по кнопке: «Записать приложение в облако»:

При клике по этой кнопке сразу же с хостинга http://aidos.byethost5.com по FTP скачивается каталог облачных Эйдос-приложений и отображается в виде экранной формы, приведенной на рисунке 16:

Рисунок 16. Экранная форма каталога облачных Эйдос-приложений

После этого нужно кликнуть по кнопке: «Добавить приложение в каталог WEB-приложений». В результате появится почти пустая строка, выделенная светло-зеленым цветом\(^{16}\), в которой будет только наименование текущего приложения, взятое из Диспетчера приложений (1.3), и абсолютная (внешняя) гиперссылка на pdf-файл, если он есть в папке ..\Aidos-X\AID_DATA\Inp_data\ (рисунок 16):

Рисунок 16. Экранная форма каталога облачных Эйдос-приложений с добавленной строкой нового приложения (выделена зеленым цветом)

\(^{16}\) Строки, выделенные светло-желтым цветом защищены от редактирования.
Затем во все незаполненные поля записи о новом приложении надо внести информацию. Это можно сделать вручную, но часто бывает удобно добавить в строку нового приложения данных из предыдущей строки. Для этого надо кликнуть по кнопке: «Копировать информацию из предыдущей строки». При этом будет скопирована вся информация, кроме наименования и гиперссылки на pdf-файл. После этого иногда бывает нужно немного скорректировать информацию о приложении, обычно об авторах.

Для записи текущего Эйдос-приложения в облако надо кликнуть по кнопке: «Сохранить приложение в облаке». Сразу после этого начинается процесс записи исходных данных приложения из папки:.\Aidos-X\AID_DATA\Inp_data\ на хост http://aidos.byethost5.com по FTP с отображением информации о ходе процесса в форме, представленной ниже:

В этой форме указано сколько всего файлов в папке: ..\Aidos-X\AID_DATA\Inp_data\ и какой из них в данный момент копируется на хост. После окончания записи выводится сообщение об окончании процесс записи:

Чтобы при записи облачных Эйдос-приложений на хост не возникало конфликтов используется следующий алгоритм с монопольным доступом пользователя к WEB-каталогу приложений.

1. Когда пользователь на экранной форме, показанной на рисунке 16, выбирает режим «Записать приложение в облако», то
WEB-каталог сразу же скачивается на локальный компьютер, а на хосте он **переименовывается** (к имени WEB-каталога на хосте добавляется дата и время переименования).

2. В результате при обращении к WEB-каталогу других пользователей (для скачивания или записи приложений) выдается сообщение о том, что он занят другими пользователями и надо немного подождать и повторить попытку обращения.

3. Когда запись приложения успешно завершается и пользователь выходит из режима записи, то измененный WEB-каталог (с добавленной записью о новом приложении) записывается на хост. Этим завершается процесс добавления приложения в облако.

В заключение приведем Help по данному режиму (рисунок 18):

Рисунок 18. Экранная форма с Help по режимам записи и скачивания облачных Эйдос-приложений

### 3.4.5.3. Скачивание из облака и установка на локальном компьютере облачных Эйдос-приложений

Для выхода на режим скачивания из облака и установки облачного Эйдос-приложения на локальном компьютере нужно в диспетчере приложений (1.3) кликнуть по кнопке: «Скачать»
приложение из облака». В этом случае появляется экранная форма каталога таких приложений (рисунок 19):

![Рисунок 19. Каталог облачных Эйдос-приложений](image)

Из рисунка 19 видно, что на момент написания статьи в облако было закачано 154 приложения системы «Эйдос»

, которые можно разделить на 5 категорий:
- НИР;
- НИОКР;
- лабораторные работы;
- курсовые работы;
- дипломные работы и выпускные квалификационные работы.

Для скачивания и начала процесса установки облачного Эйдос-приложения достаточно поставить на нем курсор и кликнуть по кнопке: «Установить приложение». По этой команде исходные данные и другие файлы выбранного приложения загружаются из облака в папку: ...\Aidos-X\AID_DATA\Inp_data\, а затем, если среди файлов исходных данных есть файл с именем Inp_data.xls(x), то автоматически начинается процесс ввода данных из внешнего файла исходных данных в систему «Эйдос» с помощью одного и ее программных интерфейсов ввода данных из внешних- источников данных (2.3.2.2 или 2.3.2.3).

Если среди исходных данных были графические файлы, то скорее всего надо создавать приложение в режиме «4.7. АСК-

17 в полную инсталляцию системы «Эйдос» входит еще 30 локальных учебных приложений
анализ изображений следуя прилагаемому описанию». Такой вариант мы видим в приложении: «23. АСК-анализ конкретных и обобщенных изображений по их спектрам».

3.4.5.4. Лаб.работы 4-го типа, устанавливаемые путем скачивания исходных данных из Internet

Ранее в системе «Эйдос» было три типа лабораторных работ:
1. Лаб.работы 1-го типа, устанавливаемые путем КОПИРОВАНИЯ готовых баз данных учебного приложения:
2. Лаб.работы 2-го типа, устанавливаемые путем РАСЧЕТА исходных баз данных учебного приложения:
3. Лаб.работы 3-го типа, устанавливаемые путем ВВОДА из внешних баз исходных данных:

Недавно в качестве примера добавлена 1-я лабораторная работа 4-го типа:
4. Лаб.работы 4-го типа, устанавливаемые путем СКАЧИВАНИЯ исходных данных из INTERNET:


В системе «Эйдос» реализована возможность записи на FTP-сервер системы «Эйдос» и скачивания и установки с него облачных Эйдос-приложений (на 20.07.2019 их 152), среди которых есть приложения, созданные на основе:
– научно-исследовательских работ (НИР);
– научно-исследовательских и опытно-конструкторских работ НИОКР;
– лабораторных работ (Лаб.раб.);
– курсовых работ;
– дипломных работ.

3.4.5.5. Форум для обсуждения облачных Эйдос-приложений

Поставив курсор на любое приложение в WEB-каталоге в режимах скачивания или записи приложений мы можем кликнуть по кнопке: «Обсуждение Эйдос-приложения». При этом с хоста из папки данного приложения будет скачан файл: «DiscAppl.txt»,
который можно корректировать в простом встроенном текстовом редакторе (рисунок 20).

Если в этом редакторе кликнуть по кнопке: «Получить гиперссылки на файлы приложения», то в текстовый редактор вставляются абсолютные гиперссылки на все файлы данного приложения, размещенные в облаке. Если скопировать любую из них в старку адресу браузера, то скачается соответствующий файл. Кроме того при этом обновляется гиперссылка на pdf-файл, если он есть среди файлов приложения.

По сути облачные Эйдос-приложения являются темами обсуждения на этом форуме.

Рисунок 20. Экранная форма обсуждения облачного Эйдос-приложения в простом встроенном текстовом редакторе

На рисунке 21 приведена экранная форма Help данного режима:

Рисунок 21. Help встроенного редактора для обсуждения облачного Эйдос-приложения
Поставив курсор на любое приложение в WEB-каталоге в режимах скачивания или записи приложений мы можем кликнуть по кнопке: «Каталог обсуждений». При этом с хоста будет скачан файл: «DiscCatalog.txt», представляющий собой каталог, содержащий информацию о скачивании приложений из облака и появлении новых сообщений при обсуждении приложений (рисунок 22):

Рисунок 22. Каталог обсуждения облачных Эйдос-приложений

Записи в данном каталоге находятся в хронологическом порядке, т.е. если перейти в его конец, то будут видны самые новые записи. Каталог обсуждений корректируется автоматически и не может быть измен пользователем.

3.4.5.6. Педагогические и научные новации, поддерживаемые предлагаемой облачной Эйдос-технологией

Задачи обобщения, абстрагирования, идентификации (классификации, распознавания, диагностики, прогнозирования), поддержки принятия решений (обратная задача прогнозирования) и исследования моделируемой предметной области путем исследования ее модели очень рас пространены в самых различных предметных областях и исследующих их научных направлениях.
Фактически эти задачи человек, осознает он это или нет, решает везде, где применяет свой естественный интеллект. И это именно те задачи, для решения которых могут быть успешно применены АСК-анализ и его программный инструментарий – интеллектуальная система «Эйдос».

В настоящее время в Internet нет недостатка в данных, на основе которых можно было бы создавать системно-когнитивные модели и решать перечисленные выше задачи. Скорее наоборот, есть избыток данных, повышающий спрос на средства их интеллектуального анализа и создающий дефицит этих средств.

Среди всех этих баз данных общего доступа выделяются репозиторий UCI и сайт Kaggle:
– http://archive.ics.uci.edu/ml/datasets.htm (создан, поддерживается и развивается: Center for Machine Learning and Intelligent Systems18, Bren School of Information and Computer Science, University of California, Irvine, USA);

Эти сайты специально созданы как хранилища большого количества высококачественных баз данных из самых различных предметных областей, предназначенных для решения различных задач с помощью систем искусственного интеллекта. Эти задачи могут решаться как в научных, так и в учебных целях, а также в интересах потребителей из правительства и бизнеса.

Однако, для решения этих задач кое-чего не хватает, а именно теоретических разработок, численных методов (алгоритмов и структур данных), а также реализующих их программных систем. Причем крайне важно, чтобы все это было в полном открытом бесплатном доступе.

Предлагаемая облачная Эйдос-технология в какой-то степени позволяет снизить или восполнить этот дефицит:
– монографии и ссылки на статьи по новому перспективному методу искусственного интеллекта: автоматизированному системно-когнитивному анализу (АСК-анализ);
– интеллектуальную программную систему «Эйдос», являющуюся инструментарием АСК-анализа;

18 http://cml.ics.uci.edu/
– около 31 встроенных в систему локальных учебных приложений;
– около 154 облачных Эйдос-приложений как для учебных, так и для научных исследований;
– общий формат по АСК-анализу и системе «Эйдос»;
– форум по обсуждению облачных Эйдос-приложений.

Принципиально важно, что библиотека облачных Эйдос-приложений может легко пополняться любыми пользователями системы «Эйдос» в мире, причем для этого не требуется никаких специальных разрешений и программирования. Размещение этих приложений в облачной библиотеке сразу делает их доступными всем пользователям системы «Эйдос» в мире. Это позволяет обмениваться пользователям и разработчикам Эйдос-приложений опытом решения различных задач, как учебного, так и научного характера, и по сути позволяет говорить о создании Эйдос-сообщества.

**Автор приглашает разработчиков и пользователей системы «Эйдос» во всем мире принять участие в этом сообществе!**

Система «Эйдос» обеспечивает картографическую визуализацию запусков системы «Эйдос» в мире, распределение которых в пространстве и времени позволяет говорить о том, что фактически такое сообщество уже состоялось, но еще не осознало себя.

Возможность пополнения библиотеки облачных Эйдос-приложений пользователями и разработчиками во всем мире позволяет говорить об открытом и масштабируемом характере облачной Эйдос-технологии, о постоянном повышении за счет этого ее ценности и востребованности.

Если все или хотя бы многие вузы, использующие систему «Эйдос» для преподавания дисциплин, связанных с искусственным интеллектом, разместят в этой облачной библиотеке свои наработки по лабораторным работам, то:

– ценность системы «Эйдос» возрастет для всех этих вузов;
– многих привлечет к Эйдос-сообществу новые вузы и НИИ, а индивидуальных исследователей и разработчиков.

---

19 Добавление локальных встроенных учебных приложений требует несложного (типового) программирования.
На сколько известно автору, ничего подобного в учебной и научной теории и практике до сих пор не было, т.е. ранее были лишь отдельные аспекты этих возможностей, а теперь они все есть в единой системе, построенной на единых теоретических и технологических основах.

Возможно в будущем к Эйдос-сообществу присоединяться разработчики и пользователи других теоретических и инструментальных подходов.

3.4.6. Форум по АСК-анализу и системе «Эйдос»


Рисунок 23. Лаборатория в ResearchGate и группа в «Фейсбуке» по АСК-анализу и системе «Эйдос»
Учитывая печальный опыт общения на форуме: «Высшие формы сознания» данный форум в группе является жестко модерируемым, т.е. все регистрации и сообщения на нем появляются только после подтверждения автором. На этом форуме можно обсуждать любые вопросы по тематике форума на любом языке.


3.4.7. Поддержка мультиязычности
Главное окно режима поддержки мультиязычности приведено ниже (рисунок 24):

Рисунок 24. Главное окно режима поддержки мультиязычности

Вместо описания данного режима приведем экранную форму помощи по нему, в котором описаны его основные функции на данный момент.
3.5. Бизнес-план в формате Canvas
3.6. Некоторые выводы и перспективы

Задачи обобщения, абстрагирования, идентификации (классификации, распознавания, диагностики, прогнозирования, поддержки принятия решений (обратная задача прогнозирования) и исследования моделируемой предметной области путем исследования ее модели очень распространены в самых различных предметных областях и исследующих их научных направлениях.

Существует и действует открытая масштабируемая интерактивная интеллектуальная on-line среда для обучения и научных исследований, основанная на автоматизированном системно-когнитивном анализе (АСК-анализ) и его программном инструментарии – интеллектуальной системе «Эйдос».

Принципиально важно, что библиотека облачных Эйдос-приложений может легко пополняться любыми пользователями системы «Эйдос» в мире, причем для этого не требуется никаких специальных разрешений и программирования. Размещение этих приложений в облачной библиотеке сразу делает их доступными всем пользователям системы «Эйдос» в мире. Это позволяет обмениваться пользователям и разработчикам Эйдос-приложений опытом решения различных задач, как учебного, так и научного характера, и по сути позволяет говорить о создании Эйдос-сообщества.

Существует много систем искусственного интеллекта. Универсальная когнитивная аналитическая система «Эйдос-Х++» отличается от них следующими параметрами:

- разработана в универсальной постановке, не зависящей от предметной области. Поэтому она является универсальной и может быть применена во многих предметных областях (http://lc.kubagro.ru/aidos/index.htm);

- находится в полном открытом бесплатном доступе (http://lc.kubagro.ru/aidos/_Aidos-X.htm), причем с актуальными исходными текстами (http://lc.kubagro.ru/__AIDOS-X.txt);

- является одной из первых отечественных систем искусственного интеллекта персонального уровня, т.е. она не требует от пользователя специальной подготовки в области

20 Добавление локальных встроенных учебных приложений требует несложного (типового) программирования.
технологий искусственного интеллекта (есть акт внедрения системы «Эйдос» 1987 года) (http://lc.kubagro.ru/aidos/aidos02/PR-4.htm);

- обеспечивает устойчивое выявление в сопоставимой форме силы и направления причинно-следственных зависимостей в неполных зашумленных взаимозависимых (нелинейных) данных очень большой размерности чисlovой и не числовой природы, измеряемых в различных типах шкал (номинальных, порядковых и числовых) и в различных единицах измерения (т.е. не предъявляет жестких требований к данным, которые невозможно выполнить, а обрабатывает те данные, которые есть);

- содержит большое количество локальных (поставляемых с инсталляцией) и облачных учебных и научных приложений (в настоящее время их 31 и 154, соответственно) (http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf);

- обеспечивает мультиязычную поддержку интерфейса на 44 языках. Языковые базы входят в инсталляцию и могут пополняться в автоматическом режиме;

- поддерживает on-line среду накопления знаний и широко используется во всем мире (http://aidos.byethost5.com/map5.php);

- наиболее трудоемкие в вычислительном отношении операции синтеза моделей и распознавания реализует с помощью графического процессора (GPU), что на некоторых задачах обеспечивает ускорение решение этих задач в несколько тысяч раз, что реально обеспечивает интеллектуальную обработку больших данных, большой информации и больших знаний;

- обеспечивает преобразование исходных эмпирических данных в информацию, а ее в знания и решение с использованием этих знаний задач классификации, поддержки принятия решений и исследования предметной области путем исследования ее системно-когнитивной модели, генерируя при этом очень большое количество табличных и графических выходных форм (развития когнитивная графика), у многих из которых нет никаких аналогов в других системах (примеры форм можно посмотреть в работе: http://lc.kubagro.ru/aidos/aidos18_LLS/aidos18_LLS.pdf);
- хорошо имитирует человеческий стиль мышления: дает результаты анализа, понятные экспертам на основе их опыта, интуиции и профессиональной компетенции.

Авторы приглашают разработчиков и пользователей системы «Эйдос» во всем мире принять участие в этом сообществе!

Возможно в будущем к Эйдос-сообществу присоединяться разработчики и пользователи других теоретических и инструментальных подходов.

Данная презентация призвана ознакомить потенциальных пользователей с возможностями этой среды.

Литература к главе III


Источник: http://lc.kubagro.ru/
16. Трунев А.П., Луценко Е.В. Автоматизированный системно-когнитивный анализ влияния факторов космической среды на ноосферу, магнитосферу и литосферу Земли: Под науч. ред. д.т.н., проф. В.И. Лойко.


25. Лойко В. И., Луценко Е. В., Орлов А. И. Современные подходы в наукометрии: монография / В. И. Лойко, Е. В. Луценко, А. И. Орлов. Под


31. Луценко Е.В., Универсальная автоматизированная система распознавания образов "ЭЙДОС". Свидетельство РосАПО №940217. Заяв. № 940103. Опубл. 11.05.94. – Режим доступа: http://lc.kubagro.ru/aidos/1994000217.jpg, 3,125 у.п.л.


33. Луценко Е.В., Универсальная автоматизированная система анализа, мониторинга и прогнозирования состояний многопараметрических динамических систем "ЭЙДОС-Т". Свидетельство РосАПО №940328. Заяв. № 940324. Опубл. 18.08.94. – Режим доступа: http://lc.kubagro.ru/aidos/1994000328.jpg, 3,125 у.п.л.


43. Луценко Е.В., Лаптев В.Н., Адаптивная автоматизированная система управления "Эйдос-АСА" (Система "Эйдос-АСА"). Пат. №


51. Луценко Е.В., Трунев А.П., Шашин В.Н., Бандык Д.К., Интеллектуальная система научных исследований влияния космической среды на глобальные геосистемы «Эйдос-астра» (ИСНИ «Эйдос-астра»). Пат. № 2011612054 РФ. Заяв. № 2011610345 РФ 20.01.2011. Опубл. от


60. Луценко Е.В., Открытая масштабируемая интерактивная интеллектуальная on-line среда «Эйдос» («Эйдос-online»). Свид. РосПатента РФ на программу для ЭВМ, Заявка № 2017618053 от


65. Луценко Е.В. АСК-анализ проблематики статей Научного журнала КубГАУ в динамике / Е.В. Луценко, В.И. Лойко // Политематический сетевой электронный научный журнал Кубанского


82. Луценко Е.В. Методика написания статей в политематический сетевой электронный научный журнал Кубанского государственного

83. Луценко Е.В. Методологические аспекты выявления, представления и использования знаний в АСК-анализе и интеллектуальной системе "Эйдос" // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2011. № 70. С. 44-91.

84. Луценко Е.В. Системная теория информации и нелокальные интерпретируемые нейронные сети прямого счета // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2003. № 1. С. 76-88.

85. Луценко Е.В., Коржаков В.Е. Метод когнитивной кластеризации или кластеризация на основе знаний (кластеризация в системно-когнитивном анализе и интеллектуальной системе "Эйдос") // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2011. № 71. С. 27-74.

86. Ткачев А.Н., Луценко Е.В. Качество жизни населения, как интегральный критерий оценки эффективности деятельности региональной администрации // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2004. № 4. С. 71-85.

87. Луценко Е.В., Лойко В.И., Макаревич О.А. Автоматизированные технологии управления знаниями в агропромышленном холдинге // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2009. № 52. С. 48-59.

88. Луценко Е.В. Когнитивные функции как адекватный инструмент для формального представления причинно-следственных зависимостей // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2010. № 63. С. 12-34.


91. Луценко Е.В. Виртуализация общества как основной информационный аспект глобализации (основы информационно-функциональной теории развития техники и информационной теории стоимости) // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2005. № 9. С. 84-121.


94. Луценко Е.В., Коржаков В.Е. Разработка без программирования и применение в адаптивном режиме методик риэлтерской экспресс-оценки по методу аналогий (сравнительных продаж) в системно-когнитивном анализе и интеллектуальной системе "Эйдос" // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2013. № 94. С. 336-347.

95. Луценко Е.В. Системно-когнитивный анализ функций и восстановление их значений по признакам аргумента на основе априорной информации (интеллектуальные технологии интерполяции, экстраполяции, прогнозирования и принятия решений по картографическим базам данных) // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2009. № 51. С. 1-25.

96. Луценко Е.В. Универсальный информационный вариационный принцип развития систем // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2008. № 41. С. 62-139.


99. Луценко Е.В. Тотальная ложь как стратегическое информационное оружие общества периода глобализации и дополненной реальности (применим ли в современном обществе принцип наблюдаемости как критерий реальности) / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского


Научное издание

Луценко Евгений Вениаминович
Трунев Александр Петрович
Чередниченко Наталья Алексеевна

РЕЗОНАНСНЫЙ СЕЙСМОГЕНЕЗ И СИСТЕМНО-КОГНИТИВНОЕ ПРОГНОЗИРОВАНИЕ СЕЙСМИЧНОСТИ

Монография

В авторской редакции
Компьютерная верстка – Е. В. Луценко
Дизайн обложки – Е. В. Луценко

Подписано в печать 24.09.2019. Формат 60 × 84 1/16.
Тираж 500 экз. Заказ № 488-50.

Типография Кубанского государственного аграрного университета
350044, г. Краснодар, ул. Калинина, 13