ГЛАВА 1. АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ
РЕЗУЛЬТАТАМИ НАУЧНОЙ ДЕЯТЕЛЬНОСТИ
БЕЗ СОДЕРЖАТЕЛЬНЫХ РАСЧЕТОВ НА ОСНОВЕ
ИНФОРМАЦИОННЫХ И КОГНИТИВНЫХ ТЕХНОЛОГИЙ
И ТЕОРИИ УПРАВЛЕНИЯ

 

Методы Функционально-стоимостного анализа и «Директ-костинг» общеизвестны и популярны. По своим идеям и принципам Функционально-стоимостной анализ и метод «Директ-костинг» очень сходны, если не сказать тождественны. С одной стороны эти идеи весьма разумны, хорошо обоснованы теоретически и доказали свою эффективность на практике. С другой стороны широкому применению этих методов препятствует сложность получения больших объемов детализированной технологической и финансово-экономической информации, а также необходимость ее тщательного исследования компетентными специалистами, хорошо и содержательно разбирающимися в предметной области. В этом и состоит противоречие между желанием применить методы ФСА и «Директ-костинг» сложностью это сделать на практике. Это противоречие представляет собой реальную проблему и часто обескураживает и вызывает разочарование этими методами. В данной работе предлагается простое и эффективное решение данной проблемы, хорошо обоснованное теоретически, оснащенное всем необходимым методическим и программным инструментарием и широко и успешно апробированное на практике. Предлагаемое решение основано на двух простых идеях: 1) вместо сбора и проведения содержательного исследования большого объема технологической и финансово-экономической информации применить подходы, приятные в теории управления; 2) для создания системы автоматизированного управления натуральной и финансово-экономической эффективностью затрат применить автоматизированный системно-когнитивный анализ и его программный инструментарий – интеллектуальную систему «Эйдос». В названии специальности 08.00.05 – Экономика и управление народным хозяйством, есть такие слова: «управление предприятиями, отраслями, комплексами, инновациями». Использование термина «Управление» предполагает, что есть модель, отражающая влияние факторов на объект управления, и есть управляющая система, принимающая решения на основе этой модели. Однако, как правило, в диссертациях по этой специальности мы ничего этого не видим, а видим лишь финансово-экономические расчеты. В работе предлагается подход, основанный на теории управления, снимающий этот недостаток

 

1.1. Постановка проблемы

 

Методы Функционально-стоимостного анализа и «Директ-костинг» общеизвестны и популярны среди ученых и практиков.

Функциона́льно-сто́имостный ана́лиз (функционально-стоимостной анализ, ФСА) — метод системного исследования функций объекта с целью поиска баланса между себестоимостью и полезностью. Начало методу положили наработки советского инженера Ю. М. Соболева (поэлементный экономический анализ, ПЭА) и американца Л. Д. Майлса (value analysis/value engineering, VA/VE). Термин «функционально-стоимостной анализ» введён в 1970 году Е. А. Грампом[1].

Директ-костинг (или директ-кост от англ. Direct Costs) — понятие, введённое американским экономистом Д. Харрисом в 1936 году, которое означает учёт прямых затрат[2].

Сущность системы директ-костинга заключается в разделении затрат на постоянные и переменные и исследовании влияния переменных затрат[3] на результаты производства, как в натуральном выражении (количество и качество продукции)., так и в стоимостном выражении (прибыль, рентабельность, капитализация и т.п.).

Необходимо отметить, что по своим идеям принципам Функционально-стоимостной анализ и метод «Директ-костинг» очень сходны, если не сказать тождественны. С одной стороны эти идеи весьма разумны, хорошо обоснованы теоретически и доказали свою эффективность на практике. С другой стороны широкому применению этих методов препятствует сложность получения больших объемов детализированной технологической и финансово-экономической информации, а также необходимость ее тщательного исследования компетентными специалистами, хорошо содержательно разбирающимися в предметной области.

В этом и состоит противоречие между желанием применить методы ФСА и «Директ-костинг» сложностью это сделать на практике. Это противоречие представляет собой реальную проблему и часто обескураживает и вызывает разочарование этими методами.

 

1.2. Идея решения проблемы

 

В данной работе предлагается простое и эффективное решение данной проблемы, хорошо обоснованное теоретически, оснащенное всем необходимым методическим и программным инструментарием и широко и успешно апробированное на практике.

Предлагаемое решение основано на двух простых идеях:

1. Вместо сбора и проведения содержательного исследования большого объема технологической и финансово-экономической информации применить подходы, приятные в теории управления.

2. Для создания системы автоматизированного управления натуральной и финансово-экономической эффективностью затрат применить автоматизированный системно-когнитивный анализ и его программный инструментарий – интеллектуальную систему «Эйдос».

Очень большая доля научных исследований, может быть даже большинство, посвящено исследованию влиянии чего-нибудь на что-нибудь и обоснованию на этой основе каких-либо рекомендаций. Автоматизированный системно-когнитивный анализ (АСК-анализ) и его программный инструментарий – интеллектуальная система «Эйдос», являются широко и успешно апробированным в самых различных предметных областях  инструментом для выявления знаний о влиянии различных факторов на поведение объекта управления и для использования этих знаний для прогнозирования, принятия решений и исследования объекта моделирования. При этом, что принципиально важно, используется подход, приятный в системно-когнитивных технологиях и теории интеллектуального управления, т.е. нет никакой необходимости вникать в содержательные аспекты самих механизмов этого влияния, проводить какие-либо технологические или финансово-экономические расчеты.

Отметим также, что в названии специальности 08.00.05 – Экономика и управление народным хозяйством, есть такие слова: «управление предприятиями, отраслями, комплексами, инновациями»[4]. Для специалиста в области теории управления использование термина «Управление» предполагает, что есть модель, отражающая силу и направление влияния факторов на поведение объекта управления, и есть управляющая система, принимающая решения на основе этой модели. Это значит также, что есть факторы и механизм их воздействия на объект управления. Однако, как правило, в диссертациях по этой специальности мы ничего этого не видим, а видим лишь финансово-экономические расчеты. В работе предлагается подход, основанный на теории управления, снимающий этот недостаток.

 

1.3. Решение проблемы

 

1.3.1. Общая структура интеллектуальной
автоматизированной системы управления

 

В теории управления известно, что в состав системы управления входят: объект управления, управляющая система, управляющие факторы, воздействующие на объект управления, информация обратной связи о состоянии объекта управления (рисунок 1):

Рисунок 1 – Цикл управления в замкнутой системе управления

 

Управляющая система принимает решения о значениях управляющих факторов на основе модели объекта управления.

Проблема состоит как в разработке этой модели на основе эмпирических данных (это скорее научная проблема), так и в ее применении в режиме реального времени в составе управляющей системы для поддержки принятия управляющих решений (это практическая проблема).

Обе эти проблемы решаются на основе автоматизированного системно-когнитивного анализа (АСК-анализ) и реализующей его интеллектуальной системы «Эйдос» [1 - 11].

 

1.3.2. Суть математической модели АСК-анализа
и частные критерии

 

Суть математической модели АСК-анализа состоит в следующем.

Непосредственно на основе эмпирических данных рассчитывается матрица абсолютных частот (таблица 1).

На ее основе рассчитываются матрицы условных и безусловных процентных распределений (таблица 2).

Затем на основе таблицы 2 с использованием частных критериев, приведенных таблице 3 рассчитываются матрицы системно-когнитивных моделей (таблица 4).

Суть этих методов в том, что вычисляется количество информации в факте наличия или определенной степени выраженности того или иного личностного свойства о том, что обладающий им кандидат будет проявлять определенную степень успешности профессиональной деятельности, работая на той или иной должности. Это позволяет сопоставимо и корректно обрабатывать разнородную информацию о респондентах, полученную с помощью различных тестов и других различных источников [11].

 

 

Таблица 1 – Матрица абсолютных частот

 

Классы

Сумма

1

...

j

...

W

Значения факторов

1

 

 

 

...

 

 

 

 

 

 

i

 

 

...

 

 

 

 

 

 

M

 

 

 

Суммарное

количество

признаков

 

 

 

 

 

 

Таблица 2 – Матрица условных и безусловных процентных распределений

 

Классы

Безусловная

вероятность

признака

1

...

j

...

W

Значения факторов

1

 

 

 

...

 

 

 

 

 

 

i

 

 

...

 

 

 

 

 

 

M

 

 

 

Безусловная

вероятность

класса

 

 

 

 

 

 

 

Таблица 3 – Различные аналитические формы частных критериев знаний

Наименование модели знаний
и частный критерий

Выражение для частного критерия

через
относительные частоты

через
абсолютные частоты

INF1, частный критерий: количество знаний по А.Харкевичу, 1-й вариант расчета вероятностей: Nj – суммарное количество признаков по j-му классу. Вероятность того, что если у объекта j-го класса обнаружен признак, то это i-й признак

INF2, частный критерий: количество знаний по А.Харкевичу, 2-й вариант расчета вероятностей: Nj – суммарное количество объектов по j-му классу. Вероятность того, что если предъявлен объект j-го класса, то у него будет обнаружен i-й признак.

INF3, частный критерий: Хи-квадрат: разности между фактическими и теоретически ожидаемыми абсолютными частотами

---

INF4, частный критерий: ROI - Return On Investment, 1-й вариант расчета вероятностей: Nj – суммарное количество признаков по j-му классу

INF5, частный критерий: ROI - Return On Investment, 2-й вариант расчета вероятностей: Nj – суммарное количество объектов по j-му классу

INF6, частный критерий: разность условной и безусловной вероятностей, 1-й вариант расчета вероятностей: Nj – суммарное количество признаков по j-му классу

INF7, частный критерий: разность условной и безусловной вероятностей, 2-й вариант расчета вероятностей: Nj – суммарное количество объектов по j-му классу

 

Обозначения к таблице 3:

i – значение прошлого параметра;

j - значение  будущего параметра;

Nij  количество встреч  j-го значения будущего параметра при i-м значении прошлого параметра;

M – суммарное число значений всех прошлых  параметров;

W - суммарное число значений всех  будущих параметров.

Ni  количество встреч  i-м значения прошлого параметра по всей выборке;

Nj  количество встреч  j-го значения будущего параметра по всей выборке;

N  количество встреч  j-го значения будущего параметра при i-м значении прошлого параметра по всей выборке.

Iij  частный критерий знаний: количество знаний в факте наблюдения i-го значения прошлого параметра о том, что объект перейдет в состояние, соответствующее j-му значению будущего параметра;

Ψ – нормировочный коэффициент (Е.В.Луценко, 2002), преобразующий количество информации в формуле А.Харкевича в биты и обеспечивающий для нее соблюдение принципа соответствия с формулой Р.Хартли;

Pi – безусловная относительная частота встречи i-го значения прошлого параметра в обучающей выборке;

Pij – условная относительная частота встречи i-го значения прошлого параметра при j-м значении будущего параметра.

Таблица 4 – Матрица системно-когнитивной модели

 

Классы

Значимость

фактора

1

...

j

...

W

Значения факторов

1

 

 

...

 

 

 

 

 

 

i

 

 

...

 

 

 

 

 

 

M

 

 

Степень

редукции

класса

 

 

 

На основе системно-когнитивных моделей, представленных в таблице 4 (отличаются частыми критериями), решаются задачи идентификации (классификации, распознавания, диагностики, прогнозирования), поддержки принятия решений (обратная задача прогнозирования), а также задача исследования моделируемой предметной области путем исследования ее системно-когнитивной модели [1-11].

Для решения этих задач в АСК-анализе и системе «Эйдос» в настоящее время используется два интегральных критерия.

 

1.3.3. Интегральные критерии и приятие управляющих решений

 

Задача принятия управляющих решений представляет собой обратную задачу прогнозирования. Если при прогнозировании на основе значений факторов, воздействующих на объект управления, определяется в какое состояние он под их воздействием перейдет, но при принятии решений наоборот, по желательному (целевому) состоянию объекта управления определяется система значений факторов, обуславливающих переход объекта в это целевое состояние.

Не все модели обеспечивают решение обратной задачи прогнозирования. Для этого они должны обеспечивать многопараметрическую типизацию, т.е. создавать обобщенные образы в будущих состояний объекта управления. Как влияет на поведение объекта управления одно значение фактора отражено в системно-когнитивных моделях. Как влияние система факторов определяется с помощью интегральных критериев. В настоящее время в системе «Эйдос» используется два аддитивных интегральных критерия:

– сумма знаний;

– резонанс знаний.

1-й интегральный критерий «Сумма знаний» представляет собой суммарное количество знаний, содержащееся в системе значений факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, о переходе объекта в будущие целевые или нежелательные состояния.

Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний:

В выражении круглыми скобками обозначено скалярное произведение. В координатной форме это выражение имеет вид:

,

где: M – количество градаций описательных шкал (признаков);

– вектор состояния j–го класса;

 – вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив–локатор), т.е.:

В текущей версии системы «Эйдос-Х++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или n, если он присутствует у объекта с интенсивностью n, т.е. представлен n раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» – один раз).

2-й интегральный критерий «Семантический резонанс знаний» представляет собой нормированное суммарное количество знаний, содержащееся в системе факторов различной природы, характеризующих сам объект управления, управляющие факторы и окружающую среду, о переходе объекта в будущие целевые или нежелательные состояния.

Интегральный критерий представляет собой аддитивную функцию от частных критериев знаний и имеет вид:

где:

M        – количество градаций описательных шкал (признаков);

        – средняя информативность по вектору класса;

       – среднее по вектору объекта;

      – среднеквадратичное отклонение частных критериев знаний вектора класса;

     – среднеквадратичное отклонение по вектору распознаваемого объекта.

– вектор состояния j–го класса;

 – вектор состояния распознаваемого объекта, включающий все виды факторов, характеризующих сам объект, управляющие воздействия и окружающую среду (массив–локатор), т.е.:

В текущей версии системы «Эйдос-Х++» значения координат вектора состояния распознаваемого объекта принимались равными либо 0, если признака нет, или n, если он присутствует у объекта с интенсивностью n, т.е. представлен n раз (например, буква «о» в слове «молоко» представлена 3 раза, а буква «м» – один раз).

Свое наименование интегральный критерий сходства «Семантический резонанс знаний» получил потому, что по своей математической форме является корреляцией двух векторов: состояния j–го класса и состояния распознаваемого объекта.

 

1.3.4. Алгоритм принятия управляющих решений
в АСК-анализе и системе «Эйдос»

 

На рисунке 2 приведен алгоритм принятия управляющих решений в АСК-анализе и системе «Эйдос»:

Рисунок 2 – алгоритм принятия управляющих решений
в АСК-анализе и системе «Эйдос»

 

 

 

1.3.5. Эксплуатация интеллектуальной АСУ
в адаптивном режиме

 

Обратим внимание на то, что приведенный на рисунке 2 алгоритм принятия решений используется непосредственно в цикле управления (рисунок 1) и предусматривает постоянную адаптацию модели, а случае необходимости и ее пересинтез, что обеспечивает учет динамики моделируемой предметной области, т.е. как самого объекта управления, так и окружающей среды.

 

1.3.6. Повышение статуса результатов исследования

 

В данной работе кратко описано, как в АСК-анализе разрабатываются и применяются системно-когнитивные модели, отражающие, какое количество информации содержится в различных значениях факторов о переходе объекта моделирования в различные будущие состояния. В системно-когнитивном анализе формулируется гипотеза о том, что это количество информации и ее знак отражают, соответственно, силу и направление действия реально существующих в моделируемой предметной области причинно-следственные закономерностей. В работе [13] обосновывается, что системно-когнитивные модели имеют статус содержательных феноменологических моделей. Для дальнейшего повышения статуса их статуса до уровня эмпирических законов необходимо расширить эмпирическую область и создать соответствующие модели. Если после этого раскрыть механизмы и причинные действия этих закономерностей и дать их содержательную интерпретацию, то можно расширить область применения эмпирических законов на всю предметную область, в которой действуют те же причинные и механизмы, и, таким образом, сформулировать научные законы [13].

 

1.4. Выводы

 

АСК-анализ и интеллектуальная система «Эйдос» являются адекватным инструментом для реализации управления в экономике без финансово-экономических расчетов на основе подхода, принятого в теории управления.

Примеры применения предлагаемого подхода к управлению предприятиями приведены в работах [2, 4].

Отметим также, что:

– АСК-анализ и система «Эйдос» хорошо теоретически обоснованы и подробно описаны в ряде работ [1, 5, 6, 7, 8 и др.];

– система «Эйдос» находится в полном открытом бесплатном доступе, причем вместе с актуальными исходными текстами, на сайте автора по адресу: http://lc.kubagro.ru/aidos/_Aidos-X.htm;

– в системе имеется большое количество учебных и реальных примеров решения различных задач, которые находятся как локально на компьютере, на котором установлена система, так и в облаке на ftp-сервере системы «Эйдос» [9];

– все приложения системы «Эйдос» описаны на столько подробно, что не представляет проблемы их повторить.

Все это существенно упрощает ее применение для решения поставленной в работе проблемы.

 

 



[1]              https://yandex.ru/search/?text=Функциона́льно-сто́имостный%20ана́лиз%20&lr=35

[2]              https://yandex.ru/search/?text=Директ-костинг%20&lr=35

[3]              Ясно, что постоянные затраты не могут рассматриваться как фактор управления результатами, т.к. при всех результатах они одинаковые.

[4]              См., например: http://teacode.com/online/vak/p08-00-05.html