ГЛАВА 2 ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ

 

2.1 Введение в интеллектуальные системы

 

Идея создания искусственного интеллекта очень проста и состоит в том, что для этого предлагается:

– во-первых, выявить основные моменты играющие существенную роль при создании естественного интеллекта;

– во-вторых, попробовать реализовать эти моменты на базе современных компьютерных технологий.

Наблюдения за системами естественного интеллекта позволяют сформулировать следующую гипотезу.

1. Естественный интеллект реально существует.

2. Естественный интеллект создается не мгновенно, а в течение довольно длительного времени по вполне определенной сложной технологии, которая включает три основных этапа:

– создание материальной системы поддержки естественного интеллекта по сложной технологии в изолированных от среды условиях;

– создание активной информационной структуры, базирующейся на материальной системе поддержки, способной к развитию и саморазвитию в систему естественного интеллекта, т.е. создание системы потенциального естественного интеллекта (оболочки, инструментальной системы);

– формирование структуры и функций естественного интеллекта во взаимодействии системы его поддержки с другими подобными системами и с окружающей средой, как с природной, так и с "социальной", т.е. созданной другими подобными системами, в результате чего происходит трансформация системы потенциального естественного интеллекта в систему реального естественного интеллекта.

3. Системы искусственного интеллекта (СИИ) полностью функционально эквивалентные естественному интеллекту могут быть созданы на базе другой материальной структуры системы поддержки системы и другой системы потенциального искусственного интеллекта.

4. Создание СИИ должно включать три этапа:

– создание материальной системы поддержки (эта проблема в основном решена, т.к. СИИ могут создаваться даже на базе современных персональных компьютеров);

– создание системы потенциального искусственного интеллекта, т.е. программной оболочки, инструментальной системы (таких систем в настоящее время существует пока еще очень мало);

– обучение и самообучение системы потенциального искусственного интеллекта и преобразование ее в реальную СИИ.

5. Основополагающую роль в создании системы потенциального искусственного интеллекта играет разработка научной концепции и теории, адекватно отражающей способы реализации функций естественного интеллекта и пути его трансформации из потенциального в реальный.

Основное назначение информационных систем в экономике – это своевременное представление необходимой информации людям, принимающим решения (ЛПР) для принятия им адекватных и эффективным решений при управлении процессами, ресурсами, финансовыми транзакциями, персоналом или организацией в целом. Однако в процессе развития информационных технологий, исследования операций и технологий моделирования, а также с возрастанием потребителей информационно – аналитической поддержки самих ЛПР, все больше проявлялась потребность в системах, не только представляющих информацию, но и выполняющих некоторый ее предварительный анализ, способных давать некоторые советы и рекомендации, осуществлять прогнозирование развития ситуаций, отбирать наиболее перспективные альтернативы решений, т.е. поддерживать решения ЛПР, взяв на себя значительную часть рутинных операций, а также функции предварительного анализа и оценок.

Интеллектуальные информационные системы (ИИС) формируются при создании информационных систем и информационных технологий для повышения эффективности управления знаниями, принятия решений в условиях, связанных с возникновением проблемных ситуаций. В этом случае любая жизненная или деловая ситуация описывается в виде некоторой познавательной модели (когнитивной схемы, архетипа, фрейма и пр.), которая впоследствии используется в качестве основания для построения и проведения моделирования, в том числе - компьютерного.

ИИС – это компьютерная система, состоящая из 5 основных взаимодействующих компонентов: языковой подсистемы (механизм обеспечения связи между пользователем и другими компонентами), информацией подсистемы (хранилище данных и средств их обработки), подсистемы управления знаниями (хранилище знаний о проблемной области, таких как процедуры, эвристики и правила, и средства обработки знаний), подсистемы управления моделями и подсистемы обработки и решения задач (связующее звено между другими подсистемами).

Основными задачами, решаемых ИИС являются:

Интерпретация данных - процесс определения смысла данных, результаты которого должны быть согласованными и корректными, предусматривается многовариантный анализ данных;

Диагностика - процесс соотношения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе;

Мониторинг - непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы;

Проектирование - подготовка необходимых документов на создание «объектов» с заранее определёнными свойствами;

Прогнозирование - предсказывание последствий некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций.

Планирование - нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. Используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности;

Обучение - использование компьютера для обучения какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе они способны диагностировать слабости в познаниях обучаемых и находить соответствующие средства для их ликвидации. Данная задача выполняется при помощи нейронных сетей. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке;

Управление - функция организованной системы, поддерживающая определенный режим деятельности;

Поддержка принятия решений - это совокупность процедур, обеспечивающая лицо, принимающее решения, необходимой информацией и рекомендациями, облегчающие процесс принятия решения.

Существует много различных подходов к классификации информационных систем. Различия между этими классификациями определяются теми критериями, по которым производится классификация:

– по степени структурированности решаемых задач;

– по автоматизируемым функциям;

– по степени автоматизации реализуемых функций;

– по сфере применения и характеру использования информации, в частности, по уровням управления.

Известно, что при обучении людей существуют различные уровни предметной обученности: воспроизведение (память); решение стандартных задач (умения, навыки); решение нестандартных, творческих задач (знания, активное интеллектуальное понимание).

Интеллект может проявляется в различных областях, но мы рассмотрим его возможности в решении задач, т.к. эта область проявления является типичной для интеллекта. Задачи бывают стандартные и нестандартные. Для стандартных задач известны алгоритмы решения. Для нестандартных они неизвестны. Поэтому решение нестандартной задачи представляет собой проблему.

Само понятие "стандартности" задачи относительно, относительна сама "неизвестность": т.е. алгоритм может быть известен одним и неизвестен другим, или информация о нем может быть недоступной в определенный момент или период времени, и доступной – в другой. Поэтому для одних задача может быть стандартной, а для других нет. Нахождение или разработка алгоритма решения переводит задачу из разряда нестандартных в стандартные.

В математике и кибернетике задача считается решенной, если известен алгоритм ее решения. Тогда процесс ее фактического решения превращается в рутинную работу, которую могут в точности выполнить человек, вычислительная машина или робот, под управлением программы реализующей данный алгоритм, не имеющие ни малейшего представления о смысле самой задачи.

Разработка алгоритма решения задачи связано с тонкими и сложными рассуждениями, требующими изобретательности, опыта, высокой квалификации. Считается, что эта работа является творческой, существенно неформализуемой и требует участия человека с его "естественным" опытом и интеллектом.

Здесь необходимо отметить, что существует технология решения изобретательских задач (ТРИЗ), в которой сделана попытка, по мнению многих специалистов, довольно успешная, позволяющая в какой-то степени формализовать процедуру решения творческих задач.

Интеллектуальными считаются задачи, связанные с разработкой алгоритмов решения ранее нерешенных задач определенного типа.

Отличительной особенностью и одним из основных источников эффективности алгоритмов является то, что они сводят решение сложной задачи к определенной последовательности достаточно простых или даже элементарных для решения задач. В результате нерешаемая задача становится решаемой. Исходная информация поступает на вход алгоритма, на каждом шаге она преобразуется и в таком виде передается на следующий шаг, в результате чего на выходе алгоритма получается информация, представляющая собой решение задачи.

Алгоритм может быть исполнен такой системой, которая способна реализовать элементарные операции на различных шагах этого алгоритма.

Существует ряд задач, таких, как распознавание образов и идентификация, прогнозирование, принятие решений по управлению, для которых разбиение процесса поиска решения на отдельные элементарные шаги, а значит и разработка алгоритма, весьма затруднительны.

Поэтому считается, что интеллект представляет собой универсальный алгоритм, способный разрабатывать алгоритмы решения конкретных задач.

С этой точки зрения профессия программиста является одной из самых творческих и интеллектуальных, т.к. продуктом деятельности программиста являются алгоритмы реализованные на некотором языке программирования (программы).

Исходя из вышесказанного можно сделать вывод о том, что в нашем случае наиболее подходит классификацией ИС, основанная на критерии, позволяющем оценить "степень интеллектуальности ИС", т.е. на критерии "степени структурированности решаемых задач" (рисунок 3).

 В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в том, что если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально не ограничено и строится из решений компонент или подпроблем.

Задачами анализа являются: интерпретация данных, диагностика, поддержка принятия решения; к задачам синтеза относятся проектирование, планирование, управление. Комбинированные: обучение, мониторинг, прогнозирование.

 

Рисунок 3 - Классификация информационных систем
по степени структурированности решаемых задач

 

Системы искусственного интеллекта (СИИ) реализуют все больше функций, ранее выполнявшиеся только человеком, например, таких как: получение новых знаний из фактов, выявление причинно-следственных взаимосвязей между факторами, действующим на объект, и переходом этого объекта в те или иные состояния. Но в основе любой математической модели, реализованной в СИИ, всегда лежит некое представление о том, каким образом осуществляются аналогичные процессы человеком.

Интеллектуализация информационных систем управления и трансформация их в интеллектуальные информационные системы управления знаниями, поддержки принятия решений является наиболее значимым и важным направлением для экономики.

 

 

2.2 Основные предпосылки СК-анализа

 

Решение поставленной проблемы прогнозирования и принятия управленческих решений традиционными методами (разработка технологических карт) требует проведения многолетних тщательно спланированных исследований и опытов касательно выращивания по различным агротехнологиям, требующих значительного расхода финансовых, трудовых и временных средств. Поэтому ученые-агрономы ищут новые возможности выявления зависимостей в эмпирических данных на основе построения модели объекта управления и прогнозирования.

Для этих целей используют статистические методы исследования, чаще всего, многофакторный анализ, применение которого не позволит исследовать всю систему факторов (исходные данные должны быть сопоставимы, ограниченное число факторов, обязательное наличие полных повторностей, высокие требования к точности исходных данных, т.к. метод неустойчив).

Кроме этого, возникает ситуация, когда реализация конкретного математического метода (например, теория информационного поля) практически невозможна, из-за отсутствия соответствующей методики численных расчетов и реализующего программного инструментария. Так, Ф. И. Перегудов и Ф. П. Тарасенко, в ряде основополагающих работ [57] подробно рассмотрели математические методы, которые в принципе могли бы быть применены для автоматизации отдельных этапов системного анализа. Однако даже самые лучшие математические методы не могут быть применены на практике без реализующих их программных систем, а путь от математического метода к программной системе долог и сложен. Для этого необходимо разработать численные методы или методики численных расчетов, реализующие математический метод, а затем разработать программную реализацию системы, основанной на этом численном методе.

Существующие системы управления отличаются друг от друга степенью формализации и автоматизации процессов идентификации, прогнозирования и выработки решения об управляющем воздействии [38]:

– слабо формализованные системы управления, встречающиеся, в основном, в сельском хозяйстве, политических, экономических, социальных и психологических системах (математика и компьютеры практически не применяются, за редким исключением);

– автоматизированные системы управления (АСУ), в которых решение об управляющем воздействии принимается управляющей системой с участием человека в процессе их взаимодействия;

– в системах автоматического управления (САУ) процесс выработки управляющего воздействия полностью автоматизирован, т.е. оно принимается управляющей системой автоматически, без участия человека в реальном времени.

В САУ моделью объекта управления, отражающей зависимость его выходных параметров от входных, является передаточная функция, получить которую практически невозможно на основе эмпирических данных, кроме подхода, предложенного в работе [35]. Но и этот метод требует участия человека (эксперта), т.е. соответствует подходу, применяемому в АСУ.

Из вышесказанного следует, что существующие системы управления в нашем случае неприменимы.

В фундаментальном подходе исследуется влияние факторов различной природы на поведение объекта управления и прогнозирования, а в техническом – влияние прошлой части временного ряда на будущую его часть (относительно текущей точки во времени). Знание этих причинно-следственных связей используется для прогнозирования и принятия решений. В фундаментальном подходе существует проблема сбора информации о действующих на объект управления и прогнозирования факторах. В техническом подходе подобной проблемы нет, т.к. базы данных с временными рядами обычно более доступны. Поэтому на практике чаще используется технический подход, т.к. это проще.

Таким образом, возникает необходимость в применении нового математического метода учитывающего основные требования к прогнозированию результатов и принятию управленческих решений по выбору агротехнологий, обеспечивающего желаемый результат. В качестве такого метода предлагается применить для достижения поставленной цели метод автоматизированного системно-когнитивного анализа (АСК-анализ). Этот выбор обусловлен тем, что выбранный метод является непараметрическим, позволяет корректно и сопоставимо обрабатывать тысячи градаций факторов и будущих состояний объекта управления при неполных (фрагментированных), зашумленных данных различной природы, т.е. измеряемых в различных единицах измерения.

Кроме этого, АСК-анализ может рассматриваться как один из вариантов синтеза фундаментального и технического подходов к прогнозированию, т.к., с одной стороны, в АСК-анализе, как в техническом подходе, в качестве исходных данных могут использоваться временные ряды, а с другой стороны, – в этих временных рядах выявляются события, а затем причинно-следственные связи между этими событиями, как в фундаментальном подходе. Конечно, это не исключает возможности в АСК-анализе выявления и использования для прогнозирования влияния на объект прогнозирования других факторов, информация о которых в исследуемых временных рядах есть только в снятом (неявном) виде [33].

В числе первых попыток реальной автоматизации системного анализа следует отметить докторскую диссертацию В. С. Симанкова (2002). Эта попытка была основана на высокой детализации этапов системного анализа и подборе уже существующих программных систем, автоматизирующих эти этапы. Эта попытка была реализована, однако, лишь для специального случая исследования в области возобновляемой энергетики, т.к. системы оказались различных разработчиков, созданные с помощью различного инструментария и не имеющие программных интерфейсов друг с другом, т.е. не образующие единой автоматизированной системы. Эта попытка, безусловно, явилась большим шагом по пути, предложенному И. П. Стабиным, но и ее нельзя признать обеспечившей достижение поставленной им цели (создание автоматизированного системного анализа), т.к. она не привела к созданию единой универсальной программной системы, автоматизирующий системный анализ, которую можно было бы применять в различных предметных областях.

АСК-анализ разработан профессором Е. В. Луценко и предложен в 2002 г. [54, 55] и представляет собой новый универсальный метод искусственного интеллекта, представляющий собой единственный в настоящее время вариант автоматизированного системного анализа, а именно, системный анализ, структурированный по базовым когнитивным операциям.

Таким образом, предложена и обоснована возможность прогнозирования и принятия управленческих решений по выбору агротехнологий производства зерна озимой пшеницы путем применения методов искусственного интеллекта, а именно метода системно-когнитивного анализа, отличающегося от традиционных тем, что обеспечивается построение и адаптация модели сложного динамичного территориально распределенного нелинейного объекта прогнозирования непосредственно на основе фрагментированной и зашумленной эмпирической информации о нем. На основе этой модели могут решаться задачи идентификации, прогнозирования, поддержки принятия управляющих решений и исследования объекта моделирования путем исследования его модели [33-35,38].