ГЛАВА-1. ОПИСАНИЕ МЕТОДА СК-АНАЛИЗА

 

1.1. Теоретические предпосылки СК-анализа

 

Системно-когнитивный анализ представляет собой системный анализ, рассматриваемый как метод познания и структурированный по базовым когнитивным (познавательным) операциям (БКОСА) [27, 35, 36].

Сам набор БКОСА следует из предложенной в [27] формализуемой когнитивной концепции, рассматривающей процесс познания, как многоуровневую иерархическую систему обработки информации в которой когнитивные структуры каждого уровня являются результатом интеграции структур предыдущего уровня.

На 1-м уровне этой системы находятся дискретные элементы потока чувственного восприятия, которые на 2-м уровне интегрируются в чувственный образ конкретного объекта. Те, в свою очередь, на 3-м уровне интегрируются в обобщенные образы классов и факторов, образующие на 4-м уровне кластеры, а на 5-м конструкты. Система конструктов на 6-м уровне образуют текущую парадигму реальности (т.е. человек познает мир путем синтеза и применения конструктов). На 7-м же уровне обнаруживается, что текущая парадигма не единственно-возможная (рисунок 1).

Ключевым для когнитивной концепции является понятие факта, под которым понимается соответствие дискретного и интегрального элементов познания (т.е. элементов разных уровней интеграции-иерархии), обнаруженное на опыте. Факт рассматривается как квант смысла, что является основой для его формализации.

Таким образом, происхождение смысла связывается со своего рода "разностью потенциалов", существующей между смежными уровнями интеграции-иерархии обработки информации в процессах познания. В полном виде когнитивная концепция приведена в работах 1-5 основного списка литературы.

 

Рисунок 1. Обобщенная схема формализуемой когнитивной концепции (иерархия базовых когнитивных операций)

 

Из данной концепции выводятся структура когнитивного конфигуратора, система базовых когнитивных операций и обобщенная схема автоматизированного системного анализа, структурированного до уровня базовых когнитивных операций (СК-анализ) (рисунок 2).

Между когнитивными структурами разных уровней иерархии существует отношение "дискретное – интегральное". Именно это служит основой формализации смысла.

Когнитивный конфигуратор, представляет собой минимальную полную систему когнитивных операций, названных "базовые когнитивные операции системного анализа" (БКОСА). Всего выявлено 10 таких операций, каждая из которых достаточно элементарна для формализации и программной реализации:

1) присвоение имен;

2) восприятие;

3) обобщение (синтез, индукция);

4) абстрагирование;

5) оценка адекватности модели;

6) сравнение, идентификация и прогнозирование;

7) дедукция и абдукция;

8) классификация и генерация конструктов;

9) содержательное сравнение;

10) планирование и принятие решений об управлении.

В работе [27] предложены математическая модель, методика счисленных расчетов, включающая структуры данных и алгоритмы реализации БКОСА, а также программный инструментарий СК-анализа – универсальная когнитивная аналитическая система "Эйдос".

Рисунок 2. Обобщенная схема

системно-когнитивного анализа (СК-анализа)

1.2. Математическая модель СК-анализа

 

1.2.1. Системное обобщение формулы Хартли

Математическая модель СК-анализа, т.е. системная теория информации (СТИ), является реализацией в области теории информации программной идеи системного обобщения математики, предложенной автором [29, 50, 48, 49].

В выражении (3) приведено системное обобщение формулы Хартли для равновероятных состояний объекта управления.

(1)

(4)

(2)

(5)

(3)

 с очень малой и быстро уменьшающейся погрешностью

(6)

W – количество чистых (классических) состояний системы.

j – коэффициент эмерджентности Хартли (уровень системной организации объекта, имеющего W чистых состояний).

 

1.2.2. Гипотеза о Законе возрастания эмерджентности

Исследование математических выражений системной теории информации (7 – 12) позволило сформулировать гипотезу о существовании "Закона возрастания эмерджентности". Суть этой гипотезы в том, что в самих элементах системы содержится сравнительно небольшая доля всей содержащейся в ней информации, а основной ее объем составляет системная информация, содержащаяся в подсистемах различного уровня иерархии.

Различие между классическим и предложенным системным понятиями информации соответствует различию между понятиями МНОЖЕСТВА И СИСТЕМЫ, на основе которых они сформированы.

 

 

 

 

(7)

(8)

(9)

(10)

(11)

(12)

 

1.2.2.1. Математическая формулировка:

 

 

1.2.2.2. Интерпретация

1.2.3. Системное обобщение формулы Харкевича

Ниже приведен вывод системного обобщения формулы Харкевича, а именно:

– классическая формула Харкевича через вероятности перехода системы в целевое состояние при условии сообщения ей определенной информации и самопроизвольно (13);

– выражение классической формулы Харкевича через частоты (14, 15);

– вывод коэффициента эмерджентности Харкевича на основе принципа соответствия с выражением Хартли в детерминистском случае (16 –19);

– вывод системного обобщения формулы Харкевича;

– окончательное выражение для системного обобщения формулы Харкевича (21).

 

1.2.3.1. Классическая формула Харкевича

(13)

Pij – вероятность перехода объекта управления в j-е состояние в условиях действия i-го фактора;

Pj – вероятность самопроизвольного перехода объекта управления в j-е состояние, т.е. в условиях отсутствия действия i-го фактора или всреднем.

Известно, что корреляция не является мерой причинно-следственных связей. Если корреляция между действием некоторого фактора и переходом объекта управления в определенное состояние высока, то это еще не значит, что данный фактор является причиной этого перехода. Для того чтобы по корреляции можно было судить о наличии причинно-следственной связи необходимо сравнить исследуемую группу с контрольной группой, т.е. с группой, в которой данный фактор не действовал.

Также и высокая вероятность перехода объекта управления в определенное состояние в условиях действия некоторого фактора сама по себе не говорит о наличии причинно-следственной связи между ними, т.е. о том, что данный фактор обусловил переход объекта в это состояние. Это связано с тем, что вероятность перехода объекта в это состояние может быть вообще очень высокой независимо от действия фактора. Поэтому в качестве меры силы причинной обусловленности определенного состояния объекта действием некоторого фактора Харкевич предложил логарифм отношения вероятностей перехода в объекта в это состояние в условиях действия фактора и при его отсутствии или в среднем (13).

Таким образом семантическая мера информации Харкевича является мерой наличия причинно-следственных связей между факторами и состояниями объекта управления.

 

1.2.3.2. Выражение классической формулы Харкевича через частоты фактов

(14)

 

(15)

 

1.2.3.3. Вывод коэффициента эмерджентности Харкевича на основе принципа соответствия с выражением Хартли в детерминистском случае

Однако мера Харкевича (13) не удовлетворяет принципу соответствия мерой Хартли как мера Шеннона, т.е. не переходит в меру Хартли в детерминистском случае, т.е. когда каждому будущему состоянию объекта управления соответствует единственный уникальный фактор и между факторами и состояниями имеется взаимно однозначное соответствие (17).

 

(16)

(17)

 

Откуда:

(18)

(19)

 

1.2.3.4. Вывод системного обобщения формулы Харкевича

 

(20)

 

1.2.3.5. Окончательное выражение для системного обобщения формулы Харкевича

 

(21)

 

 

1.2.4. Связь системной теории информации (СТИ) с теорией Хартли-Найквиста-Больцмана и теорией Шеннона

 

Связь между выражениями для плотности информации в теориях Хартли, Шеннона и СТИ приведена на рисунке 3.

 

Рисунок 3. Связь между выражениями для плотности информации в теориях Хартли, Шеннона и СТИ

 

1.2.5. Интерпретация коэффициентов эмерджентности СТИ

Интерпретация коэффициентов эмерджентности, предложенных в рамках системной теории информации, приведена на рисунке 4.

 

Рисунок 4. Интерпретация коэффициентов эмерджентности СТИ

 

Коэффициент эмерджентности Хартли j (4) представляет собой относительное превышение количества информации о системе при учете системных эффектов (смешанных состояний, иерархической структуры ее подсистем и т.п.) над количеством информации без учета системности, т.е. этот коэффициент является аналитическим выражением для уровня системности объекта.

Коэффициент эмерджентности Харкевича Y, изменяется от 0 до 1 и определяет степень детерминированности системы.

Коэффициенты эмерджентности навзаны автором системной теории информации Е.В.Луценко в честь выдающихся ученых, внесших огромный вклад в создание теории информации, коэффициетами эемеердженности Хартли и Харкевича.

Таким образом, в предложенном системном обобщении формулы Харкевича (21) впервые непосредственно в аналитическом выражении для самого понятия "Информация" отражены такие фундаментальные свойства систем, как "Уровень системности" и "Степень детерминированности" системы.

 

1.2.6. Матрица абсолютных частот

Основной формой первичного обобщения эмпирической информации в модели является матрица абсолютных частот (таблица 1). В этой матрице строки соответствуют факторам, столбцы – будущим целевым и нежелательным состояниям объекта управления, а на их пересечении приведено количество наблюдения фактов (по данным обучающей выборки), когда действовал некоторый i-й фактор и объект управления перешел в некоторое j-е состояние.

 

Таблица 1 – МАТРИЦА АБСОЛЮТНЫХ ЧАСТОТ

1.2.7. Матрица информативностей

Непосредственно на основе матрицы абсолютных частот с использованием системного обобщения формулы Харкевича (21) рассчитывается матрица информативностей (таблица 2).

 

Таблица 2 – МАТРИЦА ИНФОРМАТИВНОСТЕЙ

 

Матрица информативностей является универсальной формой представления смысла эмпирических данных в единстве их дискретного и интегрального представления (причины – последствия, факторы – результирующие состояния, признаки – обобщенные образы классов, образное – логическое, дискретное – интегральное).

Весовые коэффициенты матрицы информативностей непосредственно определяют, какое количество информации Iij система управления получает о наступлении события: "объект управления перейдет в j–е состояние", из сообщения: "на объект управления действует i–й фактор".

Когда количество информации Iij>0 – i–й фактор способствует переходу объекта управления в j–е состояние, когда Iij<0 – препятствует этому переходу, когда же Iij=0 – никак не влияет на это.

Таким образом, предлагаемая семантическая информационная модель позволяет непосредственно на основе эмпирических данных и независимо от предметной области рассчитать, какие количество информации содержится в любом событии о любом другом событии.

Этот вывод является ключевым для данной работы, т.к. конкретно показывает возможность числовой обработки в СК-анализе как числовой, так и нечисловой информации.

Матрица информативностей является также обобщенной (неклассической) таблицей решений, в которой входы (факторы) и выходы (будущие состояния объекта управления) связаны друг с другом не с помощью классических (Аристотелевских) импликаций, принимающих только значения: "Истина" и "Ложь", а различными значениями истинности, выраженными в битах и принимающими значения от положительного теоретически-максимально-возможного, до теоретически неограниченного отрицательного. Некоторые неклассические высказывания, генерируемые на основе матрицы информативности, приведены на плакате.

 

1.2.8. Неметрический интегральный критерий сходства, основанный на лемме Неймана-Пирсона

В выражениях (22 – 24) приведен неметрический интегральный критерий сходства, основанный на фундаментальной лемме Неймана-Пирсона, обеспечивающий идентификацию и прогнозирование в предложенных неортонормированных семантических пространствах с финитной метрикой, в которых в качестве координат векторов будущих состояний объекта управления и факторов выступает количество информации, рассчитанное в соответствии с системной теорией информации (21), а не Булевы координаты или частоты, как обычно.

 

(22)

(23)

Или в координатной форме:

(24)

(25)

– вектор j–го состояния объекта управления;

 – вектор состояния предметной области, включающий все виды факторов, характеризующих объект управления, возможные управляющие воздействия и окружающую среду (массив–локатор), т.е.:

 

(26)

(27)

      – средняя информативность по вектору класса;

     – среднее по вектору идентифицируемой ситуации (объекта).

    – среднеквадратичное отклонение информативностей вектора класса;

    – среднеквадратичное отклонение по вектору распознаваемого объекта.

 

1.2.9. Связь системной меры целесообразности информации с критерием c2

 

В (28 – 33) показана связь системной меры целесообразности информации с известным критерием c2, а также предложен новый критерий уровня системности предметной области, являющийся нормированным объемом семантического пространства (34, 35).

 

(28)

(29)

– Nij – фактическое количество встреч i-го признака у объектов j-го класса;

– t      ожидаемое количество встреч i-го признака у объектов j-го класса.

(30)

(31)

(32)

(33)

(34)

(35)

 

Предлагается более точный критерий уровня системности модели является объем неортонормированного семантического пространства, рассчитанный как объем многомерного параллелепипеда, ребрами которого являются оси семантического пространства. Однако для этой меры сложнее в общем виде записать аналитическое выражение и для ее вычисления могут быть использованы численные методы с использованием многомерного обобщения смешанного произведения векторов.

Абстрагирование (ортонормирование) существенно уменьшает размерность семантического пространства без существенного уменьшения его объема.

 

1.2.10. Оценка адекватности семантической информационной модели в СК-анализе и бутстрепные методы

Под адекватностью модели СК-анализа понимается ее внутренняя и внешняя дифференциальная и интегральная валидность. Понятие валидности является уточнением понятия адекватности, для которого определены процедуры количественного измерения, т.е. валидность – это количественная адекватность. Это понятие количественно отражает способность модели давать правильные результаты идентификации, прогнозирования и способность вырабатывать правильные рекомендации по управлению.

Под внутренней валидностью понимается валидность модели, измеренная после синтеза модели путем идентификации объектов обучающей выборки.

Под внешней валидностью понимается валидность модели, измеренная после синтеза модели путем идентификации объектов, не входящих в обучающую выборку.

Под дифференциальной валидностью модели понимается достоверность идентификации объектов в разрезе по классам.

Под интегральной валидностью средневзвешенная дифференциальная валидность.

Возможны все сочетания: внутренняя дифференциальная валидность, внешняя интегральная валидность и т.д.

Основная идея бутстрепа по Б.Эфрону [45] состоит в том, что методом Монте-Карло (статистических испытаний) многократно извлекаются выборки из эмпирического распределения. Эти выборки, естественно, являются вариантами исходной, напоминают ее.

Эта идея позволяет сконструировать алгоритм измерения адекватности модели, состоящий из двух этапов:

1. Синтез модели на одном случайном подмножестве обучающей выборки.

2. Измерение валидности модели на оставшемся подмножестве обучающей выборки, не использованном для синтеза модели.

Поскольку оба случайных подмножества имеют переменный состав по объектам обучающей выборки, то подобная процедура должна повторяться много раз, после чего могут быть рассчитаны статистические характеристики адекватности модели, например, такие как:

– средняя внешняя валидность;

– среднеквадратичное отклонение текущей внешней валидности от средней и другие.

Достоинство бутстрепного подхода к оценке адекватности модели состоит в том, что он позволяет измерить внешнюю валидность на уже имеющейся выборке и изучить статистические характеристики, характеризующие адекватность модели при изменении объема и состава выборки.

 

1.2.11. Непараметричность модели. Робастные процедуры и фильтры для исключения артефактов

 

Предложенная семантическая информационная модель является непараметрической, т.к. базируется на системной теории информации [27], которая никоим образом не основана на предположениях о нормальности распределений исследуемой выборки.

Под робастными понимаются процедуры, обеспечивающие устойчивую работу модели на исходных данных, зашумленных артефактами, т.е. данными, выпадающими из общих статистических закономерностей, которым подчиняется исследуемая выборка.

Критерий выявления артефактов, реализованный в СК-анализе, основан на том, что при увеличении объема статистики частоты значимых атрибутов растут, как правило, пропорционально объему выборки, а частоты артефактов так и остаются чрезвычайно малыми, близкими к единице. Таким образом, выявление артефактов возможно только при достаточно большой статистике, т.к. в противном случае недостаточно информации о поведении частот атрибутов с увеличением объема выборки.

В модели реализована такая процедура удаления наиболее вероятных артефактов, и она, как показывает опыт, существенно повышает качество (адекватность) модели.

 

1.3. Методика численных расчетов СК-анализа

 

1.3.1. Детальный список БКОСА и их алгоритмов

 

В таблице 3 приведен детальный список базовых когнитивных операций системного анализа, которым соответствует 24 алгоритма, которые здесь привести нет возможности из-за их объемности. Но они все приведены в полном виде в работе [27].

 

Таблица 3 – ДЕТАЛЬНЫЙ СПИСОК БАЗОВЫХ КОГНИТИВНЫХ ОПЕРАЦИЙ СИСТЕМНОГО АНАЛИЗА (БКОСА)

 алгоритма

Код БКОСА

по схеме

СК-анализа

БКОСА

Наименование БКОСА

Полное наименование базовых когнитивных операций системного анализа (БКОСА)

 

1.1

1

Присвоение
имен

Присвоение имен классам
(интенсиональная, интегральная репрезентация)

 

1.2

Присвоение имен атрибутам
(экстенсиональная, дискретная репрезентация)

1

2.1.

2

Восприятие

Восприятие и запоминание исходной обучающей
информации

2

2.2.

Репрезентация. Сопоставление индивидуального
опыта с коллективным (общественным)

3

3.1.1.

3

Обобщение

(синтез,
индукция).

Накопление первичных данных

4

3.1.2.

Исключение артефактов

5

3.1.3.

Расчет истинности смысловых связей между
предпосылками и результатами
(обобщенных таблиц решений)

6

3.2.

Определение значимости шкал и градаций факторов, уровней Мерлина

7

3.3.

Определение значимости шкал и градаций классов, уровней Мерлина

8

4.1.

4

Абстраги-

рование

Абстрагирование факторов (снижение размерности семантического пространства факторов)

9

4.2.

Абстрагирование классов (снижение размерности семантического пространства классов)

10

5.

5

Оценка
адекватности

Оценка адекватности информационной модели
предметной области

11

7.

6

Сравнение, идентификация и прогнозирование

Сравнение, идентификация и прогнозирование. Распознавание состояний конкретных объектов (объектный анализ)

12

9.1.

7

Анализ,

дедукция
и абдукция

Анализ, дедукция и абдукция классов (семантический анализ обобщенных образов классов, решение
обратной задачи прогнозирования)

13

9.2.

Анализ, дедукция и абдукция факторов
(семантический анализ факторов)

14

10.1.1.

8

Классификация
и генерация

конструктов

Классификация обобщенных образов классов

15

10.1.2.

Формирование бинарных конструктов классов

16

10.1.3.

Визуализация семантических сетей классов

17

10.2.1.

Классификация факторов

18

10.2.2.

Формирование бинарных конструктов факторов

19

10.2.3.

Визуализация семантических сетей факторов

20

10.3.1.

9

Содержательное
сравнение

Содержательное сравнение классов

21

10.3.2.

Расчет и отображение многомногозначных когнитивных диаграмм, в т.ч. диаграмм Мерлина

22

10.4.1.

Содержательное сравнение факторов

23

10.4.2.

Расчет и отображение многомногозначных когнитивных диаграмм, в т.ч. инвертированных диаграмм Мерлина

24

11.

10

Планирование

и управление

Многовариантное планирование и принятие решения о применении системы управляющих факторов

 

1.3.2. Иерархическая структура данных семантической информационной модели СК-анализа

 

На рисунке 5 приведена в обобщенном виде иерархическая структура баз данных семантической информационной модели системно-когнитивного анализа. На этой схеме базы данных обозначены прямоугольниками, а базовые когнитивные операции системного анализа, преобразующие одну базу в другую – стрелками с надписями. Имеются также базовые когнитивные операции, формирующие выходные графические формы. Из этой схемы видно, что одни базовые когнитивные операции готовят данные для других операций, относящихся к более высоким уровням иерархии системы процессов познания. Этим определяется возможная последовательность выполнения базовых когнитивных операций.

Рисунок 5. Иерархическая структура данных СК-анализа

1.4. Специальный программный инструментарий
СК-анализа – система "Эйдос"

 

1.4.1. Цели и основные функции системы "Эйдос"

Универсальная когнитивная аналитическая система "Эйдос" является отечественным лицензионным программным продуктом [85, 88], созданным исключительно с использованием официально приобретенного лицензионного программного обеспечения. По системе "Эйдос" и различным аспектам ее применения имеется более 150 публикаций ряда авторов [1-111 и др.]. Титульная видеограмма системы приведена на рисунке 6:

 

Рисунок 6. Титульная видеограмма системы "Эйдос"

 

Система "Эйдос" является одним из элементов предлагаемого решения проблемы и достижения цели данной работы, т.к. она обеспечивает решение следующих задач:

1. Синтез и адаптация семантической информационной модели предметной области, включая объект активный управления и окружающую среду.

2. Идентификация и прогнозирование состояния активного объекта управления, а также разработка управляющих воздействий для его перевода в заданные целевые состояния.

3. Углубленный анализ семантической информационной модели предметной области.

Таким образом, система "Эйдос" является инструментарием, решающим проблему данной работы.

 

1.4.1.1. Синтез содержательной информационной модели предметной области

Для разработки информационной модели предметной области необходимо владеть основными принципами ее когнитивной структуризации и формализованного описания. Синтез содержательной информационной модели включает следующие этапы:

1. Формализация (когнитивная структуризация предметной области).

2. Формирование исследуемой выборки и управление ею.

3. Синтез или адаптация модели.

4. Оптимизация модели.

5. Измерение адекватности модели (внутренней и внешней, интегральной и дифференциальной валидности), ее скорости сходимости и семантической устойчивости.

 

1.4.1.2. Идентификация и прогнозирование состояния объекта управления, выработка управляющих воздействий

Данный вид работ включает:

1. Ввод распознаваемой выборки.

2. Пакетное распознавание.

3. Вывод результатов распознавания и их оценку.

 

 

 

 

1.4.1.3. Углубленный анализ содержательной информационной модели предметной области

Углубленный анализ выполняется в подсистеме "Типология" и включает:

1. Информационный и семантический анализ классов и признаков.

2. Кластерно–конструктивный анализ классов распознавания и признаков, включая визуализацию результатов анализа в оригинальной графической форме когнитивной графики (семантические сети классов и признаков).

3. Когнитивный анализ классов и признаков (когнитивные диаграммы и диаграммы Вольфа Мерлина).

 

 

1.4.2. Обобщенная структура системы "Эйдос"

 

Данной обобщенной структуре соответствуют и структура управления и дерево диалога системы (таблица 4):

 

Таблица 4 – ОБОБЩЕННАЯ СТРУКТУРА СИСТЕМЫ "ЭЙДОС"
(текущей версии 12.5 от 20.04.2008)

Подсистема

Режим

Функция

Операция

1.

Формализация ПО

1. Классификационные шкалы и градации

2. Описательные шкалы (и градации)

3. Градации описательных шкал (признаки)

4. Иерархические уровни систем

1. Уровни классов

2. Уровни признаков

5. Программные интерфейсы для импорта данных

1. Импорт данных из TXT-фалов стандарта DOS-текст

2. Импорт данных из DBF-файлов стандарта проф. А.Н.Лебедева

3. Импорт из транспонированных DBF-файлов проф. А.Н.Лебедева

4. Генерация шкал и обучающей выборки RND-модели

5. Генерация шкал и обучающей выборки для исследования чисел

6. Транспонирование DBF-матриц исходных данных

7. Импорт данных из DBF-файлов стандарта Евгения Лебедева

6. Почтовая служба по НСИ

1. Обмен по классам

2. Обмен по обобщенным признакам

3. Обмен по первичным признакам

7. Печать анкеты

Подсистема

Режим

Функция

Операция

2.

Синтез СИМ

1. Ввод–корректировка обучающей выборки

2. Управление обучающей выборкой

1. Параметрическое задание объектов для обработки

2. Статистическая характеристика, ручной ремонт

3. Автоматический ремонт обучающей выборки

3. Синтез семантической информационной модели СИМ

1. Расчет матрицы абсолютных частот

2. Исключение артефактов (робастная процедура)

3. Расчет матрицы информативностей СИМ-1 и сделать ее текущей

4. Расчет условных процентных распределений СИМ-1 и СИМ-2

5. Автоматическое выполнение режимов 1–2–3–4

6. Измерение сходимости и устойчивости модели

1. Сходимость и устойчивость СИМ

2. Зависимость валидности модели от объема обучающей выборки

7. Расчет матрицы информативностей СИМ-2 и сделать ее текущей

4. Почтовая служба по обучающей информации

3.

Оптимизация СИМ

1. Формирование ортонормированного базиса классов

2. Исключение признаков с низкой селективной силой

3. Удаление классов и признаков, по которым недостаточно данных

4. Разделение классов на типичную и нетипичную части

5. Генерация сочетанных признаков и перекодирование обучающей выборки

4.

Распознавание

1. Ввод–корректировка распознаваемой выборки

2. Пакетное распознавание

3. Вывод результатов распознавания

1. Разрез: один объект – много классов

2. Разрез: один класс – много объектов

4. Почтовая служба по распознаваемой выборке

5. Построение функций влияния

6. Докодирование сочетаний признаков в распознаваемой выборке

5.

Типология

1. Типологический анализ классов распознавания

1. Информационные (ранговые) портреты (классов)

2. Кластерный и конструктивный анализ классов

1 Расчет матрицы сходства образов классов

2. Генерация кластеров и конструктов классов

3. Просмотр и печать кластеров и конструктов

4. Автоматическое выполнение режимов: 1,2,3

5. Вывод 2d семантических сетей классов

3. Когнитивные диаграммы классов

2. Типологический анализ первичных признаков

1. Информационные (ранговые) портреты признаков

2. Кластерный и конструктивный анализ признаков

1. Расчет матрицы сходства образов признаков

2. Генерация кластеров и конструктов признаков

3. Просмотр и печать кластеров и конструктов

4. Автоматическое выполнение режимов: 1,2,3

5. Вывод 2d семантических сетей признаков

3. Когнитивные диаграммы признаков

6. СК-анализ СИМ

1. Оценка достоверности заполнения объектов

2. Измерение адекватности семантической информационной модели

3. Измерение независимости классов и признаков

4. Просмотр профилей классов и признаков

5. Графическое отображение нелокальных нейронов

6. Отображение Паретто-подмножеств нейронной сети

7. Классические и интегральные когнитивные карты

7.

Сервис

1. Генерация (сброс) БД

1. Все базы данных

2. НСИ

1. Всех баз данных  НСИ

2. БД классов

3. БД первичных признаков

4. БД обобщенных признаков

3. Обучающая выборка

4. Распознаваемая выборка

5. Базы данных статистики

2. Переиндексация всех баз данных

3. Печать БД абсолютных частот

4. Печать БД условных процентных распределений СИМ-1 и СИМ-2

5. Печать БД информативностей СИМ-1 и СИМ-2

6. Интеллектуальная дескрипторная информационно–поисковая система

7. Копирование основных баз данных СИМ

8. Сделать текущей матрицу информативностей СИМ-1

9. Сделать текущей матрицу информативностей СИМ-1

 

Подробнее подсистемы, режимы, функции и операции, реализуемые системой "Эйдос", описаны в работе [27].

 

1.5. Выводы

 

Из вышеизложенного можно сделать обоснованный вывод о том, что математическая модель, методика численных расчетов (структуры данных и алгоритмы), специальный программный инструментарий СК-анализа (система "Эйдос"), а также методика и технология их применения являются адекватным инструментом для прогнозирования и поддержки принятия решений в растениеводстве.