4.1. Прогнозирование результатов выращивания сельскохозяйственных культур и поддержка принятия решений по рациональному выбору агротехнологий

 

Исследование проведено совместно с д.б.н., к.т.н., профессором О.А.Засухиной на базе Кубанского государственного аграрного университета в 1993-1996 годах [31, 35]. Методологической и инструментально-технологической основой данного исследования являлись системно-когнитивный анализ (СК-анализ) и система "Эйдос".

С помощью сформированной содержательной информационной модели прогнозировались результаты выращивания сельскохозяйственных культур и вырабатывались научно-обоснованных рекомендации по управлению урожайностью и качеством сельскохозяйственной продукции.

Созданная модель включала:

– объект управления (сельскохозяйственную культуру: зерновые колосовые);

– классы (будущие состояния объекта управления, т.е. количественные и качественные результаты выращивания);

– факторы управляющей системы (агротехнологии, т.е. нормы высева, виды и нормы внесения удобрений, методы вспашки, ротация севооборота и т.п.);

– факторы окружающей среды (вид почв, культуры–предшественники по предшествующим годам и др.).

Размерность модели составила: 35 прогнозируемых результатов выращивания, 188 градаций факторов, 217 прецедентов в обучающей выборке, 18594 факта.

На основе предложенной технологии СК-анализа в среде системы «Эйдос» разработано конкретное приложение, обеспечивающее управление продуктивностью (урожайностью) и качеством сельскохозяйственных культур путем выбора и применения оптимальной агротехнологии в зависимости от таких факторов, как:

– поставленная цель (максимальное количество или максимальное качество продукции);

– вид почв;

– метод вспашки;

– культура-предшественник;

– нормы высева;

– виды и нормы внесения удобрений;

– ротация севооборота;

а также ряда других параметров объекта управления и окружающей среды.

Этапы разработки приложения

1. Формулировка целей методики и в соответствии с ними разработка перечня прогнозируемых хозяйственных ситуаций, т.е. результатов выращивания (например, для классификации будущих состояний, в том числе целевых, могут быть использованы "шкала качества" и "шкала количества", рисунок 80):

 

Рисунок 80. Будущие состояния объекта управления: количественные и качественные результаты выращивания сельхозкультуры (зерновые колосовые)

 

2. Разработка формализованного паспорта результатов выращивания сельхозкультур, позволяющего описать в пригодной для компьютерной обработки форме результаты выращивания конкретной сельхозкультуры на конкретном поле и по конкретной технологии.

Формализованный паспорт состоит из трех частей:

– первая включает целевые и нежелательные будущие состояния объекта управления;

– вторая содержит описательные шкалы и градации, описывающие не зависящие от воли человека факторы окружающей среды;

– третья – зависящие от человека, т.е. технологические факторы, которые можно рассматривать как средство достижения желаемых хозяйственных результатов (рисунки 81 и 82).

 

Рисунок 81. Видеограмма с фрагментом справочника описательных шкал (факторы)

 

3. Использование бумажного архива по выращиванию сельхозкультур для заполнения формализованных паспортов и ввода в программную инструментальную систему «Эйдос» в качестве примеров выращивания (обучающей выборки) (рисунок 82).

 

Рисунок 82. Интерфейс ввода обучающей выборки

 

4. Выявление (на основе предъявленных реальных примеров выращивания сельхозкультур) взаимосвязей между применяемыми технологиями и полученными результатами и формирование информационных портретов по каждому возможному результату выращивания.

Информационный портрет хозяйственной ситуации представляет собой перечень технологических факторов с количественным указанием того, какое влияние оказывает каждый из них на осуществление данной ситуации (рисунок 83):

 

Рисунок 83. Примеры информационных портретов результатов выращивания "высокое количество" и "высокое качество"

5. Каждый из технологических факторов на основе приведенных примеров характеризуется тем, какое влияние он оказывает на осуществление каждой (целевой или нежелательной) хозяйственной ситуации (рисунок 84):

 

Рисунок 84. Семантический портрет признака:
"Предшественники – бобовые многолетние травы"

 

6. Сравнение различных хозяйственных ситуаций и формирование групп наиболее сходных из них (кластеров), а также определение кластеров, наиболее сильно отличаются друг от друга (конструктов). При этом на экспериментальной базе данных был выявлен конструкт "качество–количество", означающий, что для получения высокого качества и большого количества необходимы совершенно противоположные и несовместимые (т.е. невозможные одновременно) почвы: предшественники и агротехнологические приемы (рисунок 85):

 

Рисунок 85. Конструкт классов: "Качество – количество" и семантическая сеть классов по шкалам: "Качество – количество"

 

7. Группировка технологических факторов в кластеры и конструкты. Кластерно-конструктивный анализ факторов показал, что некоторые различные по своей природе факторы имеют сходное влияние на хозяйственные результаты. Эти факторы предложено использовать для замены друг друга в случае необходимости (рисунок 86):

 

Рисунок 86. Конструкт факторов: "Предшественники бобовые … – Ротация первая…" и семантической сети факторов: "Предшественники – Глубина обработки почвы"

 

8. Проверка способности созданного приложения правильно прогнозировать хозяйственные результаты на массиве уже введенных формализованных паспортов показала, что валидность оказалась недостаточно высокой для практического применения: на уровне  58%. Причиной этого являются артефакты, из-за которых некоторые хозяйственные ситуации оказались слабо детерминированными (рисунок 87). Удаление артефактов привело к повышению интегральной валидности до 80%, что достаточно для практического использования методики (рисунок 88)

 

Рисунок 87. Интегральная и дифференциальная валидность методики до исключения артефактов

Рисунок 88. Интегральная и дифференциальная валидность методики после исключения артефактов

Таким образом, решены две основные задачи:

1. Прогнозирование того, какие хозяйственные результаты наиболее вероятны (а какие практически невозможны) на данном виде почв и с данными предшественниками, а также при условии применения имеющихся в распоряжении агротехнологий (рисунок 89). Указана мера сходства прогнозируемой ситуации с каждым будущим состоянием.

 

Рисунок 89. Пример карточки прогнозирования для конкретных условий выращивания

 

2. Разработка рекомендаций по выбору управляющих воздействий, т.е. консультирование по вопросам о том, какие виды почв, предшественники и агротехнологии должны быть, чтобы можно было рассчитывать с определенной уверенностью на заданный хозяйственный результат. Для этого достаточно вывести информационный портрет заданного целевого состояния.

Система "Эйдос" позволяет оценивать степень достоверности своих прогнозов и рекомендаций по управлению, т.е. она не просто дает рекомендацию, но и количественно оценивает степень ее надежности. Кроме того, система дает характеристику влияния каждого технологического приема и рекомендации по замене желательных, но очень дорогих или не имеющихся в наличии технологических приемов, другими, более дешевыми и доступными, и, при этом, имеющими сходное влияние на хозяйственные результаты.

Таким образом, данная методика позволяет "просматривать" различные варианты технологии, прогнозировать последствия применения различных технологических приемов, и на этой основе вырабатывать научно обоснованные рекомендации по выбору возделываемой культуры и оптимальной для поставленных целей агротехнологии.

В данном исследовании в количественной форме были обнаружены как уже известные закономерности по влиянию предшественников, почв, удобрений, способов вспашки и т.д. на результаты выращивания сельхозкультур, так и новые, ранее неизвестные.