6.2. АСК-АНАЛИЗ, КАК АЛГОРИТМ СИНТЕЗА РАСУ АКТИВНЫМИ ОБЪЕКТАМИ

 

Применение АСК-анализа обеспечивает выявление информационных зависимостей между факторами различной природы и будущими состояниями объекта управления, т.е. позволяет осуществить синтез содержательной информационной модели, а фактически – осуществить синтез АСУ. Применение АСК-анализа в составе АСУ обеспечивает ее эксплуатацию в режиме непрерывной адаптации модели (на детерминистских этапах), а когда это необходимо (т.е. после прохождения точек бифуркации) – и ее нового синтеза (рисунок 6.5):

Рисунок 6. 5. АСК-анализ, как алгоритм синтеза РАСУ АО и инструмент
ее эксплуатации в режиме периодического синтеза и адаптации
модели

 

Шаг 1–й: формализация предметной области (БКОСА-1): разработка описательных и классификационных шкал и градаций, необходимых для формализованного описания предметной области. Описательные шкалы описывают факторы различной природы, влияющие на поведение АОУ, а классификационные – все его будущие состояния, в том числе целевые.

Шаг 2–й: формирование обучающей выборки (БКОСА-2): информация о состоянии среды и объекта управления, а также вариантах управляющих воздействий поступает на вход системы. Работа по преобразованию этой информации в формализованный вид (т.е. кодирование) осуществляется специалистами, обслуживающими систему с использованием описательных и классификационных шкал. Вся эта информация представляется в виде специальных кодированных бланков, используемых также для ввода информации в компьютер. В результате ее формируется так называемая "обучающая выборка".

Шаг 3–й: обучение (БКОСА-3): обучающая выборка обрабатывается обучающим алгоритмом, на основе чего им формируются решающие правила (обобщенные образы состояний АОУ, отражающие весь спектр будущих возможных состояний объекта управления), а также определяется ценность факторов для решения задач подсистем идентификации, мониторинга, прогнозирования и выработки управляющих воздействий.

Шаг 4–й: оптимизация (БКОСА-4): факторы, не имеющие особой прогностической ценности, корректным способом удаляются из системы. Данный процесс осуществляется с помощью итерационных алгоритмов, при этом обеспечивается выполнение ряда ограничений, таких как результирующая размерность пространства факторов, его информационная избыточность и т.п.

Шаг 5–й: верификация модели (БКОСА-5): выполняется после каждой адаптации или пересинтеза модели. Для этого обучающая выборка копируется в распознаваемую и осуществляется ее автоматическая классификация (в режиме распознавания). Затем рассчитывается так называемая внутренняя дифференциальная и интегральная валидность, являющиеся детализированной и обобщающей характеристиками качества решающих правил.

Шаг-6: принятие решения об эксплуатации модели или ее пересинтезе. Если результаты верификации модели удовлетворяют разработчиков РАСУ АО, то она переводится из пилотного режима, при котором управляющие решения генерировались, но не исполнялись, в режим экспериментальной эксплуатации, а затем и опытно–производственной эксплуатации, когда они реально начинают использоваться для управления. Иначе, т.е. если же модель признана недостаточно адекватной, то необходимо осуществить ее пересинтез, начиная с шага 1. При этом используются следующие приемы: расширение набора факторов, т.к. значимые факторы могли не войти в модель; увеличение объема обучающей выборки, т.к. существенные примеры могли не войти в обучающую выборку; исключение артефактов, т.к. в модель могли вкрасться существенно искажающие ее не подтверждающиеся данные; пересмотр экспертных оценок и, если необходимость этого возникает систематически, то и переформирование экспертного совета, т.к. причиной этого могла быть некомпетентность экспертов; объединение некоторых классы, т.к. по ним недостаточно данных; разделение некоторых классов, т.к. по ним слишком высокая вариабельность объектов по признакам, и т.д.

Шаг 7-й: идентификация и прогнозирование состояния АОУ (БКОСА-7).

Шаг 8-й: оценка качества идентификации состояния АОУ. Если качество идентификации высокое, то состояние АОУ рассматривается как типовое, а значит причинно-следственные взаимосвязи между факторами и будущими состояниями данного объекта управления считаются адекватно отраженными в модели и известными (т.е. если качество идентификации высокое, то считается, что объект относится к генеральной совокупности, по отношению к которой обучающая выборка репрезентативна). Поэтому в этом случае осуществляется переход на Шаг-9 (выработка управляющего воздействия и последующий анализ). Иначе – считается, что на вход системы идентификации попал объект, не относящийся к генеральной совокупности, адекватно представленной обучающей выборкой. Поэтому в этом случае информация о нем поступает на Шаг-13, начиная с которого запускается процедура пересинтеза модели, что приводит к расширению генеральной совокупности, представленной обучающей выборкой.

Шаг 9-й: выработка решения об управляющем воздействии (БКОСА-9) путем решения обратной задачи прогнозирования [277].

Шаг 10–й типологический анализ классов и факторов (БКОСА-10): кластерно-конструктивный и когнитивный анализ, семантические сети, когнитивные диаграммы состояний АОУ и факторов [152].

Шаг 11-й: многофакторное планирование и принятие решения о применении системы управляющих факторов (БКОСА-11).

Шаг 12-й: оценка адекватности принятого решения об управляющих воздействиях: если АОУ перешел в заданное целевое состояние, то осуществляется переход на вход адаптации содержательной информационной модели (Шаг- 2): в подсистеме идентификации предусмотрен режим дополнения распознаваемой выборки к обучающей, чтобы в последующем, когда станут известны результаты управления, этой верифицированной (т.е. достоверной) оценочной информацией дополнить обучающую выборку и переформировать решающие правила (обучающая обратная связь). Иначе, т.е. если АОУ не перешел в заданное целевое состояние, переход на вход пересинтеза модели (Шаг-1), при этом могут быть изменены и описательные, и классификационные (оценочные) шкалы, что позволяет качественно расширить сферу адекватного функционирования РАСУ АО.

Шаг 13–й (неформализованный поиск нетипового решения об управляющем воздействии и подготовка данных для пересинтеза модели, как в случае, если решения оказалось удачным, так и в противном случае).

 

Таким образом, предложены методика и конкретный алгоритм применения АСК-анализа, основанного на теории информации, для синтеза рефлексивных АСУ АО и решения следующих задач в процессе ее эксплуатации: формирование обобщенных образов состояний АОУ на основе обучающей выборки (обучение); идентификация состояний АОУ на основе его параметров (распознавание); определение влияния входных параметров на перевод АОУ в различные будущие состояния (обратная задача прогнозирования); прогнозирование поведения АОУ в условиях полного отсутствия управляющих воздействий; прогнозирование поведения АОУ при различных вариантах многофакторных управляющих воздействий. Кроме того, выявленные в результате работы рефлексивной АСУ причинно-следственные зависимости между факторами различной природы и будущими состояниями объекта управления позволяют, при условии неизменности этих закономерностей в течение достаточно длительного времени, построить АСУ с постоянной моделью классического типа.