1.3. ТРАДИЦИОННЫЕ ПУТИ РЕШЕНИЯ ПРОБЛЕМЫ

 

1.3.1. Характеристика исходных данных и требования к математической модели

 

Предполагается, что исходные данные обладают большими размерностями (тысячи и десятки тысяч факторов и состояний объекта управления), не подчиняются нормальному распределению, являются фрагментарными (неполными), а также неточными и зашумленными. Считается, что их невозможно собрать в результате специально-организованного эксперимента и единственным способом их получения является наблюдение.

Из этих характеристик исходных данных вытекают следующие основные требования к математической модели:

– содержательная интерпретируемость;

– эффективная вычислимость на основе эмпирических данных (наличие эффективного численного метода);

– универсальность;

– адекватность;

– сходимость;

– семантическая устойчивость;

– сопоставимость результатов моделирования в пространстве и времени;

– непараметричность;

– формализация базовых когнитивных операций системного анализа (прежде всего таких, как обобщение, абстрагирование, сравнение классификация и др.);

– корректность работы на фрагментарных, неточных и зашумленных данных;

– возможность обработки данных очень больших размерностей (тысячи и десятки тысяч факторов и будущих состояний объекта управления);

– математическая и алгоритмическая ясность и простота, эффективная программная реализуемость.

Рассмотрим различные классы моделей на предмет их соответствия предъявляемым требованиям.

 

1.3.2. Понятие модели; классификация и общие принципы построения моделей. Выбор класса модели активного объекта управления в рефлексивной АСУ (содержательные информационные модели)

 

При построении АСУ существует фундаментальная и в принципе неустранимая проблема, вытекающая из противоречия между целью и средствами АСУ. Это проблема адекватности средств: АСУ создаются для управления состояниями реальных объектов, а манипулируют они лишь условными сигналами о состояниях реальных объектов и их математическими моделями.

Перед принятием решения о характере управляющего воздействия на объект его возможные результаты моделируются в АСУ на основе математической модели объекта управления. Поэтому эффективность АСУ непосредственно связана с адекватностью модели объекта управления и достоверностью информации о его реальных состояниях.

В этой связи для достижения целей исследования необходимо:

– рассмотреть роль и место математических моделей в общей системе классификации моделей различного типа;

– дать определение сложной системы и сложного объекта управления АСУ;

– сформулировать общие принципы построения математических моделей сложных систем;

– обосновать выбор абстрактной модели АОУ.

Сущность моделирования и общая классификация моделей.

Под моделью понимается некий объект–заместитель, который в определенных условиях заменяет изучаемый объект–оригинал, воспроизводя наиболее существенные его свойства и обеспечивая большее удобство оперирования [234].

Первоначально в качестве моделей одних объектов применялись другие объекты. Затем были осознаны модельные свойства чертежей, рисунков и карт. Отдельный класс составляют физические аналоговые модели: электрические, пневматические и т.п. Следующий шаг заключался в признании того, что моделями одних реальных объектов могут служить не только другие реальные объекты, но и абстрактные идеальные построения, типичным примером которых служат математические и другие символические модели, в частности сам язык.

Математические модели в свою очередь подразделяются на статистические (матричные), операциональные (алгоритмические) и аналитические [234].

Кроме того, модель может быть специально построена таким образом, чтобы отражать только внешние, наблюдаемые феноменологические характеристики моделируемых явлений. Такие модели называются феноменологическими. Также разработчик может попытаться сконструировать содержательную модель явления, вскрывающую внутренние ненаблюдаемые механизмы явления, но таким образом, чтобы из этой содержательной модели следовали и внешне наблюдаемые характеристики. Если эти прогнозируемые на основании содержательной модели внешние характеристики соответствуют действительно наблюдаемым, то обычно считается, что и содержательная модель соответствует действительности, т.е. верна или истинна.

При этом считается, что "в действительности все устроено именно так, как это предполагается в содержательной модели". Это очень сильная и ответственная операция придания абстрактной модели онтологического статуса называется гипостазированием. В результате выполнения этой и чаще всего неоправданной операции люди начинают считать, что мир устроен определенным образом, хотя в действительности так устроена лишь их модель этого мира. К вопросу об истинности содержательных моделей нужно относиться крайне осторожно, так как, по–видимому, можно создать неограниченное количество различных содержательных моделей, верно объясняющих одну и ту же феноменологическую картину (альтернативные модели).

К этому необходимо добавить, что построение содержательных моделей значительно более трудоемко, чем феноменологических.

Математические модели обладают различной степенью общности:

– наиболее общими являются статистические (матричные) модели, частным случаем которых являются информационные модели, которые позволяют отобразить и детерминистские, и статистические системы очень большой размерности;

– алгоритмические модели имеют более узкую область адекватности: они неудобны для отображения статистических зависимостей и лучше работают в детерминистской области;

– аналитические модели можно отнести к подмножеству алгоритмических, для которых разработан аналитический формализм (уравнения, формулы).

С возникновением математической лингвистики было осознано, что языковые модели также относятся к аналитическим моделям. В этом смысле любое словесное описание какого либо объекта является его моделью, а сам язык в целом является моделью той области реальности, которую можно каким–либо образом (с различными степенями адекватности) отобразить с его использованием [234]. Более того, язык – это модель реальности, вполне адекватно отражающая исторический опыт того народа, который этот язык создал.

В настоящее время осуществляются совершенно обоснованные попытки обобщить понятие модели на любые информационно связанные реальные и идеальные системы. Если есть любые две информационно взаимодействующие системы (неважно реальные или идеальные), то любая из этих систем может рассматриваться как модель другой в той степени, в какой она отражает ее.

Таким образом, модель некоторого объекта или явления есть и средство, и результат его познания.

Именно использование модели явления позволяет АСУ моделировать последствия различных вариантов целенаправленного управляющего воздействия на него, сравнивать эти возможные последствия с целевыми, желательными состояниями и выбирать воздействие, приводящее к результату, наиболее близкому к целевому.

Общие принципы построения математических моделей при управлении активными объектами.

Рассмотрим этапы построения, вопросы алгоритмизации и программной реализации моделей сложных систем, применимых в адаптивных АСУ сложными системами.

Существуют три основных проблемы, которые необходимо решить перед созданием математической модели сложной системы:

– прежде всего должна быть определена цель создания модели, так как модель отображает оригинал не во всей его полноте (это невозможно, так как модель конечна, а любой объект неисчерпаем), а лишь те аспекты оригинала, которые связаны с достижением поставленной цели; цель, безусловно, сама представляет собой модель того состояния объекта управления, для достижения которого применяется АСУ;

– должен быть выбран тип модели, исходя из двух взаимосвязанных требований: во–первых, модель должна адекватно отображать актуальное состояние оригинала, и, во–вторых, она должна обеспечивать формирование алгоритма преобразования объекта управления из актуального состояния в целевое;

– модель должна быть проста в реализации, т.е. требовать для своей реализации минимальных вычислительных и других видов ресурсов, так как в противном случае эта модель будет представлять лишь чисто абстрактный интерес.

Отметим, что в качестве варианта решения этих проблем, имеющего ряд достоинств, в данном исследовании предложена адаптивная информационная модель, обеспечивающая динамическую перестройку решающих правил в соответствии с содержанием обучающей информации и новой (дополнительной) или изменившейся целью.

Модель должна обеспечивать выявление наиболее существенного в объекте с точки зрения достижения цели управления.

Конечность модели неизбежно приводит к тому, что любая модель является упрощенной. Это считается приемлемым, так как все соглашаются с неизбежностью того, что модель соответствует оригиналу с некоторой погрешностью. Необходимо лишь, чтобы эта погрешность была практически приемлемой. Необходимо подчеркнуть, что на практике упрощенность модели не является особым препятствием для ее эффективного применения.

Существует еще одна причина вынужденного упрощения модели: необходимость практической реализации модели и реального оперирования с ней. Очень сложные модели невозможно реализовать и практически использовать, поэтому они имеют скорее лишь чисто научную ценность. Опыт показывает, что сложные модели редко хорошо работают. Часто упрощенные модели дают огромный выигрыш в потребляемых вычислительных ресурсах по сравнению с оптимальными моделями, давая результаты, отличающиеся от оптимальных условно говоря в десятых знаках после запятой. Простые и эффективные модели часто вызывают своего рода эстетическое удовлетворение, т.е. они в определенном смысле "красивы".

Таким образом, при создании модели явления нужно стремиться не только к тому, чтобы она адекватно отражала все наиболее существенные стороны моделируемого явления (с точки зрения достижения цели управления), но и соответствовала требованиям "простоты" и "красоты".

При создании модели необходимо специально в явном виде сформулировать те предпосылки, которые должны быть истинными, чтобы модель была применимой, т.е. те условия и характеристики моделируемых явлений, соблюдение которых необходимо для обеспечения адекватности модели.

Например, в ряде случаев пользователи статистических пакетов применяют параметрические статистические процедуры, пригодные только в случае нормальности выборки, и при этом не только не проверяют, выполняется ли это условие, но и даже не задумываются о том, соблюдается ли оно в их конкретном случае. К выводам, полученным при подобных "методах" исследования, нужно относиться с большой осторожностью, так как достоверный результат при таком подходе сам является случайностью.

Подобные ситуации выдвинули перед разработчиками моделей специальную проблему: создание моделей, применимость которых сохраняется в очень широком диапазоне условий данных. В математической статистике этому подходу соответствуют непараметрические и робастные процедуры обработки данных, в теории управления – исследование устойчивости моделей и адаптивные модели.

Часто бывает сложным явно исследовать выборку на нормальность. В этом случае косвенным свидетельством в пользу ее нормальности может служить согласованность результатов ее анализа параметрическими и непараметрическими методами. Поэтому рекомендуется не ограничиваться каким–либо одним, пусть даже, по–видимому, адекватным задаче методом, а применять несколько различных методов и затем сопоставлять их результаты друг с другом. Это существенно увеличивает надежность выводов.

Наука накопила значительный опыт построения различного рода моделей. Заманчивой кажется идея обобщения этого опыта и построения алгоритма для проектирования моделей, по крайней мере моделей определенного класса. Однако более глубокий анализ показывает, что построение модели является сложным наукоемким и творческим итерационным процессом, в котором в процессе построения модели могут уточняться и даже изменяться цели ее создания и другие исходные данные. В любом случае  обнаружить недостатки уже работающей модели гораздо проще, чем предусмотреть и обойти их заранее. На основании этого можно сделать вывод о том, что создание каждой модели высокого качества представляет собой событие в соответствующей области науки, а сам процесс создания новых моделей, полностью (до конца) в принципе не формализуем.

В этой связи особую значимость приобретает вопрос о разработке адаптивных моделей, т.е. моделей, способных легко перестраиваться и сохранять высокую степень адекватности как при изменении целевых и оценочных установок, так и самой моделируемой предметной области.

Опыт показывает, что модели, не обладающие высокой степенью адаптивности, как правило, имеют короткий жизненный цикл, так как быстро теряют адекватность (исключением из этого правила являются лишь естественнонаучные модели, описывающие фундаментальные свойства реальности).

 

1.3.3. Модели, применяемые в социально-экономическом анализе и прогнозировании

 

Согласно В. В. Федосееву с соавторами [322] общепринятой классификации моделей социально-экономических систем не существует, вместе с тем для этого обычно используют несколько независимых друг от друга классификационных шкал с градациями (таблица 1.2).

 

Таблица 1. 2 – КЛАССИФИКАЦИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ
СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ СИСТЕМ

Сам В. В. Федосеев рассматривает:

– основы линейного программирования;

– оптимальные экономико-математические модели;

– методы и модели анализа динамики экономических процессов;

– модели прогнозирования;

– балансовые модели;

– эконометрические (регрессионные) модели;

– прикладные модели.

Другие авторы дают несколько отличающуюся классификацию экономико-математических методов и моделей.

Н. Ш. Кремер, Б. А. Путко и соавторы [112, 113] рассматривают:

– модели линейного и нелинейного программирования;

– модели сетевого планирования и управления;

– теорию массового обслуживания;

– модели управления запасами;

– элементы теории вероятностей, математической статистики и линейной алгебры;

– парный и множественный регрессионный анализ;

– регрессионные статические и динамические модели;

– методы анализа временных рядов и прогнозирования;

– обобщенную линейную модель множественной регрессии и метод наименьших квадратов;

– системы одновременных уравнений.

О.О.Замков, А.В.Толстопятенко и Ю.Н.Черемных в своей работе [87] раскрывают содержание следующих методов:

– функции и графики;

– основы дифференциального исчисления и его применение к исследованию функций, в частности эластичности функций и функций нескольких переменных;

– соотношения между суммарными, средними и предельными величинами;

– оптимизационные задачи с ограничениями и задачи оптимизации производства;

– методы максимизации полезности, модели потребительского спроса и компенсационные эффекты;

– производственные функции;

– экономическая динамика и ее моделирование;

– математическая теория игр;

– экономико-статистические методы;

– линейная регрессия: статистический анализ модели, ее построение и применение для макроэкономического анализа;

– метод наименьших квадратов;

– системы одновременных уравнений;

– нелинейная регрессия;

– авторегрессионное преобразование.

Таким образом, на основании этого краткого анализа, по мнению автора, можно констатировать, что традиционно при рассмотрении экономико-математических методов недостаточно внимания уделяется интеллектуальным методам анализа данных и извлечения знаний из данных (Data Mining), прежде всего таким, как методы распознавания образов и принятия решений, а также вопросам применения теории информации в экномических исследованиях. В определенной степени эту диспропорцию компенсируют такие работы как [181–184, 320, 321]. Рассмотрим некоторые из этих методов и подходов подробнее.

 

1.3.4. Идентификация состояний активных систем в рефлексивных АСУ

 

Основные задачи адаптивной идентификации.

Распознавание представляет собой информационный процесс, реализуемый некоторым преобразователем информации (интеллектуальным информационным каналом, системой распознавания), имеющим вход и выход. На вход системы подается информация о том, какими признаками обладают предъявляемые объекты. На выходе системы отображается информация о том, к каким классам (обобщенным образам) отнесены распознаваемые объекты.

При создании и эксплуатации автоматизированной системы распознавания образов решается ряд задач. Рассмотрим кратко и упрощенно эти задачи. Отметим, что у различных авторов формулировки этих задач, да и сам набор не совпадают, так как он в определенной степени зависит от конкретной математической модели, на которой основана та или иная система распознавания. Кроме того, некоторые задачи в определенных моделях распознавания не имеют решения и, соответственно, не ставятся.

Задача формализации предметной области.

По сути это задача является задачей кодирования. Составляется список обобщенных классов, к которым могут относиться конкретные реализации объектов, а также список признаков, которыми эти объекты в принципе могут обладать.

Задача формирования обучающей выборки.

Обучающая выборка представляет собой базу данных, содержащую описания конкретных реализаций объектов на языке признаков, дополненную информацией о принадлежности этих объектов к определенным классам распознавания.

Задача обучения системы распознавания.

Обучающая выборка используется для формирования обобщенных образов классов распознавания на основе обобщения информации о том, какими признаками обладают объекты обучающей выборки, относящиеся к этому классу и другим классам.

Задача снижения размерности пространства признаков.

После обучения системы распознавания (получения статистики распределения частот признаков по классам) становится возможным определить для каждого признака его ценность для решения задачи распознавания. После этого наименее ценные признаки могут быть удалены из системы признаков. Затем система распознавания должна быть обучена заново, так как в результате удаления некоторых признаков статистика распределения оставшихся признаков по классам изменяется. Этот процесс может повторяться, т.е. быть итерационным.

Задача распознавания, идентификации и прогнозирования.

Распознаются объекты распознаваемой выборки, которая, в частности, может состоять и из одного объекта. Распознаваемая выборка формируется аналогично обучающей, но не содержит информации о принадлежности объектов к классам, так как именно это и определяется в процессе распознавания. Результатом распознавания каждого объекта является распределение или список всех классов распознавания в порядке убывания степени сходства распознаваемого объекта с ними.

Задача контроля качества распознавания, идентификации и прогнозирования.

После распознавания может быть установлена его адекватность. Для объектов обучающей выборки это может быть сделано сразу, так как для них просто известно, к каким классам они относятся. Для других объектов эта информация может быть получена позже. В любом случае может быть определена фактическая средняя вероятность ошибки по всем классам распознавания, а также вероятность ошибки при отнесении распознаваемого объекта к определенному классу.

Результаты распознавания должны интерпретироваться с учетом имеющейся информации о качестве распознавания.

Задача адаптации.

Если в результате выполнения процедуры контроля качества установлено, что оно неудовлетворительное, то описания неправильно распознанных объектов могут быть скопированы из распознаваемой выборки в обучающую, дополнены адекватной классификационной информацией и использованы для переформирования решающих правил, т.е. учтены. Более того, если эти объекты не относятся к уже имеющимся классам распознавания, что и могло быть причиной их неверного распознавания, то этот список может быть расширен. В результате система распознавания адаптируется и начинает адекватно классифицировать эти объекты.

Задача выработки управления (обратная задача распознавания, идентификации и прогнозирования).

Задача распознавания состоит в том, что для данного объекта по его известным признакам устанавливается его принадлежность к некоторому ранее неизвестному классу. В обратной задаче распознавания, наоборот, для данного класса распознавания устанавливается, какие признаки наиболее характерны для объектов данного класса, а какие нет (или какие объекты обучающей выборки относятся к данному классу).

Задачи кластерного и конструктивного анализа.

Кластерами называются такие группы объектов, классов или признаков, что внутри каждого кластера они максимально сходны, а между разными кластерами – максимально различны.

Конструктом (в контексте, рассматриваемом в данном разделе) называется система противоположных кластеров. Таким образом, в определенном смысле конструкты есть результат кластерного анализа кластеров.

В кластерном анализе количественно измеряется степень сходства и различия объектов (классов, признаков), и эта информация используется для классификации. Результатом кластерного анализа является сама классификация объектов по кластерам. Эта классификация может быть представлена в форме семантических сетей.

Задача когнитивного анализа.

В когнитивном анализе информация о сходстве и различии классов или признаков интересует исследователя сама по себе, а не для того, чтобы использовать ее для классификации, как в кластерном и конструктивном анализе.

Если для двух классов распознавания является характерным один и тот же признак, то это вносит вклад в сходство этих двух классов. Если же для одного из классов этот признак является нехарактерным, то это вносит вклад в различие.

Если два признака коррелируют друг с другом, то в определенном смысле их можно рассматривать как один признак, а если антикоррелируют, то как различные. С учетом этого обстоятельства наличие различных признаков у разных классов также вносит определенный вклад в их сходство и различие.

Результаты когнитивного анализа могут быть представлены в форме когнитивных диаграмм.

Методы идентификации и их характеристики.

Принципы классификации методов распознавания образов.

Распознаванием образов называются задачи построения и применения формальных операций над числовыми или символьными отображениями объектов реального или идеального мира, результаты решения которых отражают отношения эквивалентности между этими объектами. Отношения эквивалентности выражают принадлежность оцениваемых объектов к каким–либо классам, рассматриваемым как самостоятельные семантические единицы.

При построении алгоритмов распознавания классы эквивалентности могут задаваться исследователем, который пользуется собственными содержательными представлениями или использует внешнюю дополнительную информацию о сходстве и различии объектов в контексте решаемой задачи. Тогда говорят о "распознавании с учителем" [75]. В противном случае, т.е. когда автоматизированная система решает задачу классификации без привлечения внешней обучающей информации, говорят об автоматической классификации или "распознавании без учителя". Большинство алгоритмов распознавания образов требует привлечения весьма значительных вычислительных мощностей, которые могут быть обеспечены только высокопроизводительной компьютерной техникой.

Различные авторы ( Ю.Л. Барабаш [15], В.И. Васильев [39], А.Л. Горелик , В.А. Скрипкин [58], Р. Дуда, П. Харт [72], Л.Т.Кузин [114], Ф.И. Перегудов, Ф.П. Тарасенко [234], Темников Ф.Е., Афонин В.А., Дмитриев В.И.  [309], Дж. Ту, Р. Гонсалес [315], П. Уинстон [318], К. Фу [328], Я.З. Цыпкин [340] и др.) дают различную типологию методов распознавания образов. Одни авторы различают параметрические, непараметрические и эвристические методы, другие – выделяют группы методов, исходя из исторически сложившихся школ и направлений в данной области. Например, в работе [75], в которой дан академический обзор методов распознавания, используется следующая типология методов распознавания образов:

– методы, основанные на принципе разделения;

– статистические методы;

– методы, построенные на основе "потенциальных функций";

– методы вычисления оценок (голосования);

– методы, основанные на исчислении высказываний, в частности на аппарате алгебры логики.

В основе данной классификации лежит различие в формальных методах распознавания образов и поэтому опущено рассмотрение эвристического подхода к распознаванию, получившего полное и адекватное развитие в экспертных системах.

Эвристический подход основан на трудно формализуемых знаниях и интуиции исследователя. При этом исследователь сам определяет, какую информацию и каким образом система должна использовать для достижения требуемого эффекта распознавания.

Подобная типология методов распознавания с той или иной степенью детализации встречается во многих работах по распознаванию. В то же время известные типологии не учитывают одну очень существенную характеристику, которая отражает специфику способа представления знаний о предметной области с помощью какого–либо формального алгоритма распознавания образов.

Д.А.Поспелов (1988) выделяет два основных способа представления знаний [244]:

– интенсиональное, в виде схемы связей между атрибутами (признаками).

– экстенсиональное, с помощью конкретных фактов (объекты, примеры).

Интенсиональное представление фиксируют закономерности и связи, которыми объясняется структура данных. Применительно к диагностическим задачам такая фиксация заключается в определении операций над атрибутами (признаками) объектов, приводящих к требуемому диагностическому результату. Интенсиональные представления реализуются посредством операций над значениями атрибутов и не предполагают произведения операций над конкретными информационными фактами (объектами).

В свою очередь, экстенсиональные представления знаний связаны с описанием и фиксацией конкретных объектов из предметной области и реализуются в операциях, элементами которых служат объекты как целостные системы.

Можно провести аналогию между интенсиональными и экстенсиональными представлениями знаний и механизмами, лежащими в основе деятельности левого и правого полушарий головного мозга человека. Если для правого полушария характерна целостная прототипная репрезентация окружающего мира, то левое полушарие оперирует закономерностями, отражающими связи атрибутов этого мира [91, 244].

Описанные выше два фундаментальных способа представления знаний позволяют предложить следующую классификацию методов распознавания образов:

– интенсиональные методы, основанные на операциях с признаками.

– экстенсиональные методы, основанные на операциях с объектами.

Необходимо особо подчеркнуть, что существование именно этих двух (и только двух) групп методов распознавания: оперирующих с признаками, и оперирующих с объектами, глубоко закономерно. С этой точки зрения ни один из этих методов, взятый отдельно от другого, не позволяет сформировать адекватное отражение предметной области. Между этими методами существует отношение дополнительности в смысле Н.Бора [25], поэтому перспективные системы распознавания должны обеспечивать реализацию обоих этих методов, а не только какого–либо одного из них.

Таким образом, в основу классификации методов распознавания, предложенной Д.А.Поспеловым [244], положены фундаментальные закономерности, лежащие в основе человеческого способа познания вообще, что ставит ее в совершенно особое (привилегированное) положение по сравнению с другими классификациями, которые на этом фоне выглядят более легковесными и искусственными.

Интенсиональные методы.

Отличительной особенностью интенсиональных методов является то, что в качестве элементов операций при построении и применении алгоритмов распознавания образов они используют различные характеристики признаков и их связей. Такими элементами могут быть отдельные значения или интервалы значений признаков, средние величины и дисперсии, матрицы связей признаков и т. п., над которыми производятся действия, выражаемые в аналитической или конструктивной форме. При этом объекты в данных методах не рассматриваются как целостные информационные единицы, а выступают в роли индикаторов для оценки взаимодействия и поведения своих атрибутов.

Группа интенсиональных методов распознавания образов обширна, и ее деление на подклассы носит в определенной мере условный характер:

– методы, основанные на оценках плотностей распределения значений признаков

– методы, основанные на предположениях о классе решающих функций

– логические методы

– лингвистические (структурные) методы.

Экстенсиональные методы.

В методах данной группы, в отличие от интенсионального направления, каждому изучаемому объекту в большей или меньшей мере придается самостоятельное диагностическое значение. По своей сути эти методы близки к клиническому подходу, который рассматривает людей не как проранжированную по тому или иному показателю цепочку объектов, а как целостные системы, каждая из которых индивидуальна и имеет особенную диагностическую ценность [75]. Такое бережное отношение к объектам исследования не позволяет исключать или утрачивать информацию о каждом отдельном объекте, что происходит при применении методов интенсионального направления, использующих объекты только для обнаружения и фиксации закономерностей поведения их атрибутов.

Основными операциями в распознавании образов с помощью обсуждаемых методов являются операции определения сходства и различия объектов. Объекты в указанной группе методов играют роль диагностических прецедентов. При этом в зависимости от условий конкретной задачи роль отдельного прецедента может меняться в самых широких пределах: от главной и определяющей и до весьма косвенного участия в процессе распознавания. В свою очередь условия задачи могут требовать для успешного решения участия различного количества диагностических прецедентов: от одного в каждом распознаваемом классе до полного объема выборки, а также разных способов вычисления мер сходства и различия объектов. Этими требованиями объясняется дальнейшее разделение экстенсиональных методов на подклассы:

– метод сравнения с прототипом;

– метод k–ближайших соседей;

– алгоритмы вычисления оценок ("голосования");

– коллективы решающих правил.

Сравнительный анализ методов идентификации и прогнозирования.

В таблице 1.2. представлена характеристика различных методов распознавания образов по следующим параметрам: классификация методов распознавания; области применения методов распознавания; классификация ограничений методов распознавания.

Таблица 1. 3 - КЛАССИФИКАЦИЯ МЕТОДОВ РАСПОЗНАВАНИЯ, СРАВНЕНИЕ ИХ ОБЛАСТЕЙ ПРИМЕНЕНИЯ И ОГРАНИЧЕНИЙ

Роль и место идентификации состояний объектов в автоматизации управления активными объектами.

Автоматизированная система управления состоит из двух основных частей: объекта управления и управляющей системы.

Управляющая система осуществляет следующие функции:

– идентификация состояния объекта управления;

– выработка управляющего воздействия исходя из целей управления с учетом состояния объекта управления и окружающей среды;

– оказание управляющего воздействия на объект управления.

Распознавание образов есть не что иное, как идентификация состояния некоторого объекта. Автоматизированная система управления, построенная на традиционных принципах, может работать только на основе параметров, закономерности связей которых уже известны, изучены и отражены в математической модели. В итоге АСУ, основанные на традиционном подходе, практически не работают с активными многопараметрическими слабодетерминированными объектами управления, такими, например, как макро– и микросоциально–экономические системы в условиях динамичной экономики "переходного периода", иерархические элитные и этнические группы, социум и электорат, физиология и психика человека, природные и искусственные экосистемы и многие другие.

Поэтому, в состав перспективных АСУ, обеспечивающих устойчивое управление активными объектами в качестве существенных функциональных звеньев должны войти подсистемы идентификации и прогнозирования состояний среды и объекта управления, основанные на методах искусственного интеллекта (прежде всего распознавания образов), методах поддержки принятия решений и теории информации.

Кратко рассмотрим вопрос о применении систем распознавания образов для принятия решений об управляющем воздействии.

Если в качестве классов распознавания взять целевые и иные будущие состояния объекта управления, а в качестве признаков – факторы, влияющие на него, то в модели распознавания образов может быть сформирована количественная мера причинно-следственной связи факторов и состояний. Это позволяет по заданному состоянию объекта управления получить информацию о факторах, которые способствуют или препятствуют его переходу в это состояние, и, на этой основе, выработать решение об управляющем воздействии.

Факторы могут быть разделены на следующие группы:

– характеризующие предысторию объекта управления и его актуальное состояние управления;

– технологические (управляющие) факторы;

– факторы окружающей среды;

Таким образом, системы распознавания образов могут быть применены в составе АСУ: в подсистемах идентификации состояния объекта управления и выработки управляющих воздействий.

Это целесообразно в случае, когда объект управления представляет собой активную систему.

 

1.3.5. Принятие решения об управляющем воздействии в рефлексивных АСУ активными объектами

 

Решение проблемы синтеза адаптивных АСУ сложными системами рассматривается в данной работе с учетом многочисленных и глубоких аналогий между методами распознавания образов и принятия решений.

С одной стороны, задача распознавания образов представляет собой принятие решения о принадлежности распознаваемого объекта к определенному классу распознавания. С другой стороны, задачу принятия решения предлагается рассматривать как обратную задачу декодирования или обратную задачу распознавания образов. Но особенно очевидной общность основных идей, лежащих в основе методов распознавания образов и принятия решений, становится при рассмотрении их с позиций теории информации.

Многообразие задач принятия решений.

Принятие решений как реализация цели.

Определение: принятие решения ("выбор") есть действие над множеством альтернатив, в результате которого исходное множество альтернатив сужается, т.е. происходит его редукция.

Выбор является действием, придающим всей деятельности целенаправленность. Именно через акты выбора реализуется подчиненность всей деятельности определенной цели или совокупности взаимосвязанных целей.

Принятие решений как снятие неопределенности (информационный подход).

Процесс получения информации можно рассматривать как уменьшение неопределенности в результате приема сигнала, а количество информации – как количественную меру степени снятия неопределенности.

Но в результате выбора некоторого подмножества альтернатив из множества, т.е. в результате  принятия решения, происходит тоже самое (уменьшение неопределенности). Это значит, что каждый выбор, каждое решение порождает определенное количество информации, а значит может быть описано в терминах теории информации.

Классификация задач принятия решений.

Множественность задач принятия решений связана с тем, что каждая компонента ситуации, в которой осуществляется принятие решений, может реализовываться в качественно различных вариантах [75].

Критериальный язык принятия решений.

Об одном и том же явлении можно говорить на различных языках различной степени общности и адекватности. К настоящему времени сложились три основных языка описания выбора.

Самым простым, наиболее развитым и наиболее популярным является критериальный язык [234].

Название этого языка связано с основным предположением, состоящим в том, что каждую отдельно взятую альтернативу можно оценить некоторым конкретным (одним) числом, после чего сравнение альтернатив сводится к сравнению соответствующих им чисел.

Пусть, например, {X} – множество альтернатив, а x – некоторая определенная альтернатива, принадлежащая этому множеству: xX. Тогда считается, что для всех x может быть задана функция q(x), которая называется критерием (критерием качества, целевой функцией, функцией предпочтения, функцией полезности и т.п.), обладающая тем свойством, что если альтернатива x1 предпочтительнее x2 (обозначается: x1 > x2), то q(x1)>q(x2).

При этом выбор сводится к отысканию альтернативы с наибольшим значением критериальной функции.

Однако на практике использование лишь одного критерия для сравнения степени предпочтительности альтернатив оказывается неоправданным упрощением, так как более подробное рассмотрение альтернатив приводит к необходимости оценивать их не по одному, а по многим критериям, которые могут иметь различную природу и качественно отличаться друг от друга.

Многокритериальные задачи не имеют однозначного общего решения. Поэтому предлагается множество способов придать многокритериальной задаче частный вид, допускающий единственное общее решение. Естественно, что для разных способов эти решения являются в общем случае различными. Поэтому едва ли не главное в решении многокритериальной задачи – обоснование данного вида ее постановки. Используются различные варианты упрощения многокритериальной задачи выбора, основным из которых является сведение многокритериальной задачи к однокритериальной путем ввода интегрального критерия.

Основная проблема в многокритериальной постановке задачи принятия решений состоит в том, что необходимо найти такой аналитический вид функции, связывающей частные критерии с интегральным критерием, который бы обеспечил следующие свойства модели: высокую степень адекватности предметной области и точке зрения экспертов; минимальные вычислительные трудности максимизации интегрального критерия, т.е. его расчета для разных альтернатив; устойчивость результатов максимизации интегрального критерия от малых возмущений исходных данных.

Выбор в условиях неопределенности.

Определенность – это частный случай неопределенности, а именно: это неопределенность, близкая к нулю.

В современной теории выбора считается, что в задачах принятия решений существует три основных вида неопределенности:

1. Информационная (статистическая) неопределенность исходных данных для принятия решений.

2. Неопределенность последствий принятия решений (выбора).

3. Расплывчатость в описании компонент процесса принятия решений.

Экспертные методы выбора.

При исследовании сложных систем часто возникают проблемы, которые по различным причинам не могут быть строго поставлены и решены с применением разработанного в настоящее время математического аппарата. В этих случаях прибегают к услугам экспертов (системных аналитиков), чей опыт и интуиция помогают уменьшить сложность проблемы.

Однако необходимо учитывать, что эксперты сами представляют собой сверхсложные системы, и их деятельность также зависит от многих внешних и внутренних условий. Поэтому в методиках организации экспертных оценок большое внимание уделяется созданию благоприятных внешних и психологических условий для работы экспертов.

На работу эксперта оказывают влияние следующие факторы:

– ответственность за использование результатов экспертизы;

– знание того, что привлекаются и другие эксперты;

– наличие информационного контакта между экспертами;

– межличностные отношения экспертов (если между ними есть информационный контакт);

– личная заинтересованность эксперта в результатах оценки;

– личностные качества экспертов (самолюбие, конформизм, воля и др.)

Взаимодействие между экспертами может как стимулировать, так и подавлять их деятельность. Поэтому в разных случаях используют различные методы экспертизы, отличающиеся характером взаимодействия экспертов друг с другом: анонимные и открытые опросы и анкетирования, совещания, дискуссии, деловые игры, мозговой штурм и т.д.

Существуют различные методы математической обработки мнений экспертов. Экспертам предлагают оценить различные альтернативы либо одним, либо системой показателей. Кроме того им предлагают оценить степень важности каждого показателя (его "вес" или "вклад"). Самим экспертам также приписывается уровень компетентности, соответствующий вкладу каждого из них в результирующее мнение группы.

Развитой методикой работы с экспертами является метод "Дельфи" [234]. Основная идея этого метода состоит в том, что критика и аргументация благотворно влияют на эксперта, если при этом не затрагивается его самолюбие и обеспечиваются условия, исключающие персональную конфронтацию.

Необходимо особо подчеркнуть, что существует принципиальное различие в характере использования экспертных методов в экспертных системах и в поддержке принятия решений. Если в первом случае от экспертов требуется формализация способов принятия решений, то во втором – лишь само решение, как таковое.

Поскольку эксперты привлекаются для реализации именно тех функций, которые в настоящее время или вообще не обеспечиваются автоматизированными системами, или выполняются ими хуже, чем человеком, то перспективным направлением развития автоматизированных систем является максимальная автоматизация этих функций.

Обоснована необходимость поиска или разработки математической модели, адекватной для целей моделирования активных объектов управления адаптивных АСУ.

 

Рассмотрены общие принципы построения математических моделей и определено, что для моделирования активных объектов управления при большой степени неопределенности исходной информации может быть целесообразно применение модели "черного ящика", как предъявляющей минимальные требования к объему априорной информации об объекте управления.

Определены общие и специфические требования к математической модели сложного объекта управления и критерии их оценки. Обосновано, что модель должна быть математически прозрачной (достаточно простой) и технологичной в программной реализации. Кроме того, она должна обеспечивать:

– идентификацию состояния АОУ по его выходным параметрам (при независимости времени идентификации от объема обучающей выборки);

– выработку эффективных управляющих воздействий на активный объект управления;

– накопление информации об объекте управления и повышение степени адекватности модели, в том числе в случае изменения характера взаимосвязей между входными и выходными параметрами АОУ (периодический синтез и адаптивность модели);

– определение ценности факторов для детерминации состояний АОУ и контролируемое снижение размерности модели при заданных граничных условиях, в том числе избыточности.

Проведен краткий обзор методов распознавания образов и принятия решений, дан их сравнительный анализ в соответствии с ранее обоснованными критериями, очерчены области применения методов и их основные ограничения, определена  степень соответствия рассмотренных методов целям, поставленным в работе.

Таким образом, как показал аналитический обзор методов распознавания образов и принятия решений, а также их сравнительный анализ в соответствии с предложенными критериями, метода, вполне адекватного для применения в составе рефлексивных АСУ активными объектами, в готовом виде не существует, но он может быть разработан на основе метода решения многокритериальной задачи с применением математических моделей теории информации.

Обычно поставленная проблема решается путем слабо формализованного процесса разработки новой версии АСУ, адекватной качественно изменившейся ситуации. Конечно при этом применяются средства синтеза модели, но эти средства рассчитаны на единовременный, а не периодический синтез.  При этом используется системный анализ ПО, включая математические модели и средства автоматизации различных этапов системного анализа. Обзор различных подходов к системному анализу и различных средств автоматизации его этапов позволяет сделать выводы о том, что:

1. Автоматизированные средства периодического синтеза моделей ПО практически отсутствуют и в настоящее время синтез модели является полностью неформализуемым этапом системного анализа.

2. Математические модели, применяемые для автоматизации различных этапов системного анализа, основаны на различных математических подходах и теориях и не имеют единой методологической базы и понятийной основы, а значит слабо согласуются друг с другом, что не предполагает их совместное использование или делает его трудно достижимым.

3. Программные средства, обеспечивающие автоматизацию математических моделей различных этапов системного анализа, разработаны для ограниченного набора моделей, основаны на различных инструментальных средствах и стандартах баз данных и не образуют единого программного комплекса. Кроме того, они как правило не имеют универсальной формы и созданы для применения в конкретных предметных областях.