Эти требования по сути
являются требованиями к математической модели активного объекта управления, а
критерии – критериями оценки степени адекватности модели.
Требования можно разделить
на две основные группы:
– общие требования,
связанные с качеством выполнения моделью своих функций и ее реализуемостью;
– специфические требования,
вытекающие из их использования для синтеза и эксплуатации адаптивных АСУ
сложными объектами.
Рассмотрим эти требования по
порядку. Необходимо отметить, что в соответствии с концептуальной идеей решения
основной проблемы, поставленной в данной работе (см. раздел 1.5), рассмотрим
методы распознавания образов и принятия решений с точки зрения их применимости
для моделирования активных объектов управления в рефлексивных АСУ активными
объектами.
Одно из основных общих требований к модели – "функциональность". Под функциональностью понимается пригодность модели для достижения поставленной цели. В контексте данной работы модель функциональна, если она обеспечивает адекватную идентификацию текущего состояния моделируемого объекта и отражает динамику его развития.
Очевидно, что функциональность модели не является единственным критерием ее качества. Показателями качества модели являются также либо собственно вероятность ошибки классификации, либо связанные с ней некоторые функции потерь. При этом различают условную вероятность ошибочной классификации, ожидаемую ошибку алгоритма классификации на выборке заданного объема, и асимптотическую ожидаемую ошибку классификации. Функции потерь также разделяют на функцию средних потерь, функцию ожидаемых потерь и эмпирическую функцию средних потерь.
Необходимо отметить, что само понятие "ошибка классификации" предполагает, что существует независимый от алгоритма распознавания способ, позволяющий достоверно определить, к какому классу относится каждый распознаваемый объект. Обычно (но не всегда) считается, что таким способом является экспертная оценка. На этой основе может быть сформулирован соответствующий критерий качества алгоритмов распознавания, который можно было бы назвать "степень соответствия экспертным оценкам", или более пространно: "очевидность и естественность результатов автоматизированной классификации для человека–специалиста". Дело в том, что, к сожалению, слишком часто результаты автоматизированной классификации плохо интерпретируются, т.е., проще говоря, малопонятны или совсем непонятны людям, несмотря на то, что при этом они являются правильными с точки зрения определенных формальных критериев. Это безусловно является существенным недостатком таких алгоритмов.
Кроме того, алгоритмы распознавания имеют свои "области
компетентности", т.е. эффективность их работы в большей или меньшей
степени зависит от статистических характеристик входных данных (обучающей
выборки), и от того, что априорно известно об этих статистических
характеристиках. В данном исследовании предлагается соответствующий критерий
качества распознающего алгоритма, который мог бы быть назван "универсальность".
Практически во всех случаях предъявляются более или менее жесткие требования и ко времени решения задачи. В ряде случаев быстродействие алгоритма играет очень существенную, если не решающую роль: например, в военных приложениях (конечно, при условии, что идентификация выполняется правильно). Во всяком случае с прагматической точки зрения можно считать, что если на реальных данных, которые необходимо обработать, алгоритм работает неприемлемо долго, то можно сделать вывод о том, что он просто практически не работает.
Конечно, время решения задачи (при всех прочих равных условиях) определяется не только вычислительной эффективностью алгоритма, но и мощностью вычислительной системы (компьютера). Поэтому использование современных быстродействующих компьютеров весьма желательно. И все же не следует смешивать эти две проблемы, так как при любом уровне развития вычислительной техники всегда существовали алгоритмы, которые работали практически, а также алгоритмы, которые работали лишь теоретически, т.е. гипотетически.
Следующим критерием качества модели является ее "логическая сложность". Часто алгоритмы с более высокой достоверностью распознавания являются и более сложными.
Например, такие развитые и качественные с точки зрения высокой достоверности распознавания методы, как комплексные методы: "алгоритмы вычисления оценок" (АВО) и "коллективы решающих правил" (КРП) [75] имеют очень высокую сложность. Отсюда следует высокая сложность их программной реализации, а также низкое быстродействие, сложность интерпретации результатов их работы.
Косвенным критерием качества распознающего алгоритма является "наличие коммерческой программной реализации", а также популярность у пользователей соответствующей программной системы.
Естественно, упомянутыми выше критериями качества алгоритмов распознавания их перечень не ограничивается. Учитывая это, предлагается ввести понятие "интегральный критерий качества алгоритма распознавания". В предварительном плане для количественной оценки интегрального критерия можно предложить метод сведения многокритериальной задачи к однокритериальной, однако более подробное рассмотрение этих вопросов выходит за рамки данной работы.
По–видимому, идеальным, с точки зрения предложенных выше критериев качества, можно считать универсальный, высокоадекватный, быстросходящийся и устойчивый, быстродействующий и простой алгоритм, дающий интуитивно–понятные специалистам результаты.
Например, применяются три
основных экспериментальных метода оценки наиболее распространенного критерия
качества распознающих алгоритмов, вероятности достоверного распознавания:
– выборка используется одновременно как обучающая и контрольная;
– выборка разбивается на две части – обучающую и контрольную;
– из всей выборки случайным образом извлекается один объект, а по оставшимся синтезируется решающее правило и производится распознавание извлеченного объекта, эта процедура повторяется заданное число раз (например, до полного перебора).
Первый способ дает завышенную оценку качества распознавания по сравнению с той же оценкой качества по независимым от обучения данным. Второй способ является самым простым и убедительным. Им широко пользуются, если экспериментальных данных достаточно. В то же время третий способ, называемый также методом скользящего экзамена, является наиболее предпочтительным, так как дает меньшую дисперсию оценки вероятности ошибки. Однако этот метод является и самым трудоемким, так как требует многократного построения правила распознавания.
Кроме общих требований к методу распознавания образов, существуют еще и специфические, которые вытекают из применения этого метода для синтеза и эксплуатации адаптивных АСУ сложными системами.
Метод должен обеспечивать:
– решение обратной задачи распознавания: т.е. по целевому состоянию АОУ он должен определять входные параметры, переводящие объект управления в это состояние;
– сравнение целевых и иных состояний активного объекта управления по тем факторам, которые способствуют или препятствуют переводу АОУ в эти состояния (изучение вопросов устойчивости управления).
Таким образом, на основе вышеизложенного можно сформулировать следующие основные требования к моделям АОУ, ориентированные на применение в РАСУ АО.
Модель должна обеспечивать:
– идентификацию состояния АОУ по его выходным параметрам (при независимости времени идентификации от объема обучающей выборки);
– выработку эффективных управляющих воздействий на активный объект управления;
– накопление информации об объекте управления и повышение степени адекватности модели, в том числе в случае изменения характера взаимосвязей между входными и выходными параметрами АОУ (адаптивность);
– определение ценности факторов для детерминации состояний АОУ и контролируемое снижение размерности модели при заданных граничных условиях, в том числе избыточности.
Кроме того, модель должна быть математически прозрачной (достаточно простой) и технологичной в программной реализации.