СИНТЕЗ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ АВТОНОМНЫМИ КОМБИНИРОВАННЫМИ ФОТОВЕТРОЭЛЕКТРОЭНЕРГЕТИЧЕСКИМИ УСТАНОВКАМИ
Симанков В.С., Зайцев И.В., Луценко Е.В.
Су
ществует большое разнообразие энергетических ресурсов и методов их преобразования. Наиболее используемыми являются органические топлива: нефть, уголь, природный газ, а также ресурсы преобразования энергии управляемой цепной ядерной реакции деления, а также гидроресурсы рек. К менее используемым можно отнести ресурсы солнечной радиации, ветрового потока, биомассы, геотермики, мирового океана и др. Если рассмотреть баланс энерговыработки в мире на начало 90-х годов, то на долю органических топлив приходится 87% выработки энергии, на атомных электростанциях вырабатывается 5%, на гидроэлектростанциях 7%.Хотя в настоя
щее время подавляющую часть всей энерговыработки составляют органические топлива, они относятся к невозобновляемым источникам энергии (НВИЭ), близким к истощению. По оценкам специалистов при современных темпах изменения интенсивности их добычи, ресурсы нефти будут исчерпаны примерно через 40 лет, угля - через 700 лет (при переходе от нефти и природного газа к углю - через 300 лет). Кроме того, интенсивное использование органических топлив создало ряд экологических проблем, связанных с загрязнением окружающей среды, усилением "парникового эффекта", изменением геоморфологической структуры.Эти недостатки традиционной энергетики делают актуальным в настоя
щее время разработку и использование более экологически чистых источников энергии, запасы которых достаточно велики для обеспечения человечества. К ним относятся прежде всего возобновляемые источники энергии, запасы которых в настоящее время видятся неограниченными.Для со
здания энергосистемы малой и средней мощности и особенно автономных энергосистем, удаленных от линии электропередач и теплотрасс, наиболее целесообразно использовать другие возобновляемые источники энергии, в первую очередь энергию солнечной радиации, ветрового потока, тепла земли.Такие
энергосистемы в настоящее время позволяют снизить имеющийся в мире дефицит энергии без ввода новых мощных электро- и теплостанций, прокладки линий электропередач и теплотрасс, оздоровить экологическую обстановку в районах производства энергии.Однако эти источники энергии также обладают своими недостатками, основными из которых являются малая мощность, непостоянство во времени в течение суток и года, непредсказуемость. В то же время по данным метеостатистики достоинства и недостатки таких возобновляемых источников энергии, как солнечная радиация и ветровой поток, удачно компенсируют друг друга:
Наиболее п
ерспективной для использования в качестве системы электроснабжения удаленных потребителей малой и средней мощности в настоящее время представляются автономные комбинированные фотоветроэлектрические установки (ФВЭУ) - объект исследования настоящей работы. Особенно актуально применение ФВЭУ в районах, удаленных от энергетических магистралей, а также в мобильных группах различного назначения.Вследствие высокой стоимости эл
ектроэнергии и неравномерности ее поступления система автоматического управления (САУ) автономной энергосистемой с возобновляемыми источниками энергии значительно повышает ее эффективность [4].Синте
з таких САУ проводится с учетом анализа ФВЭУ на двух уровнях:Предметом исследования в данной работе является развитие метода синтеза САУ ФВЭУ на операционном уровне, предложенного в [4].
Рассматриваемые ФВЭУ включает следующие подсистемы (установки) (рисунок 2):
Рисунок 2. Принципиальная схема ФВЭУ
Реальные ФВЭУ могут отличаться друг от
друга структурой, типом используемых устройств (преобразователей, накопителей, потребителей), родом вырабатываемого тока.Цель САУ заключается в автоматическом обеспечении технологических требований работоспособности компонентов энергосистемы, снижении вероятности аварийных ситуаций, связанных с
недоотпуском потребителю энергии. Данная цель достигается за счет автоматического поддержания работы электрогенераторов в режиме максимальной мощности, автоматической защиты устройств от аварийных ситуаций, координации работы отдельных установок с целью приведения хода производства электроэнергии в заданный, нормальный режим.Рассматриваемым энергосистемам присущи различные по физической природе процессы:
Такая совокупность процессов позволяет использовать двух
уровневую САУ, что обычно имеет место в реальных ФВЭУ:На уровне компонентов ФВЭУ САУ осуществляет оптимальное управление по техническим критериям эффективности. Соответствующие технические решения известны и не являются предметом рассмотрения в данной работе.
Существование операционного уровня означает, что эффективная работа автономных ФВЭУ возможна только при использовании систем автоматического управления
(САУ), т.е. зависит не только от эффективной работы компонент ФВЭУ, рассматриваемых отдельно, но и от способа их взаимодействия.Наибольший интерес представляет операционный уровень, на котором осуществляется оптимальное управление по экономическому или другому критерию эффективности.
Методы оптимизации функционирования традиционных энергетических систем (ЭС), потребляющих НВИЭ, в настоящее время хорошо разработаны. При этом критериями оптимизации являются: минимизация затрат на топливо, поступающего в систему, а также эксплуатационных затрат. При этом нагрузка распределятся на
потребители независимо от их оптимальной мощности (считается, что энергия производится с избытком) и все расчеты проводятся для заданного эксплуатационного режима.В случае ФВЭУ данный подход неприемлем по многим причинам.
Во-первых, ФВЭУ, как правило, являются необслуживаемыми, следовательно, эксплуатационными затратами можно практически пренебречь.
Во-вторых, возобновляемые источники энергии (ВИЭ), потребляемой ФВЭУ, не имеют стоимости.
В-третьих, преобразователи возобновляемой энергии характеризуются сравнительно высокой стоимостью и низким КПД. Поэтому требованию экономического оптимума в этом случае лучше всего соответствует наиболее полное обеспечение потребителей за счет минимизации потерь энергии.
А
втономные ФВЭУ характеризуются большой стоимостью вырабатываемой энергии и неравномерностью ее поступления. Эти особенности делают практически неприемлемым сброс излишков энергии. Большинство потребителей электроэнергии как промышленных, так и бытовых не обладают свойствами аккумулирования энергии. Поэтому наиболее эффективной системой и методом операционного управления представляется использующая накопители избыточной энергии. С другой стороны, при проектировании автономных ФВЭУ без резервных источников задаются коэффициентом обеспеченности энергосистемы (отношение периода времени, за который нагрузка будет покрыта, к полному периоду эксплуатации) 0,8 - 0,9 в силу большого возрастания стоимости установки при ее обеспеченности, приближающейся к "1" поэтому при неблагоприятных с энергетической точки зрения климатических условиях и/или во время часов пика энергопотребления возникает дефицит вырабатываемой мощности. Отсюда появляется необходимость отключать какие-то потребители, что желательно производить с учетом их приоритета.В силу вышеприведенных особенностей автономных ФВЭУ в
качестве принципа их управления на операционном уровне целесообразно принять комбинированный метод с накоплением избыточной энергии и распределением нагрузки. При этом, в условиях существующего или прогнозируемого дефицита энергии осуществляется распределение нагрузки с учетом приоритета, а при избытке вырабатываемой энергии осуществляется ее накопление.В настоящее время не существует четкого оптимального алгоритма управления
энергораспределением автономных ФВЭУ в условиях дефицита вырабатываемой мощности. Кроме того, в силу большой изменчивости поступления возобновляемой энергии данный оптимальный алгоритм управления для условий различных климатов может не совпадать.На операционном уровне
САУ осуществляется оперативное управление распределением энергопотоков между элементами энергосистемы посредством координации функционирования отдельных управляющих устройств на первом уровне.Целью
рассматриваемого уровня САУ является наиболее полное и бесперебойное снабжение потребителей электроэнергией при ее неравномерном поступлении в условиях нормального эксплуатационного режима всех элементов энергосистемы. Таким образом, цель САУ на операционном уровне дуальна: наиболее полное обеспечение как текущих, так и будущих потребностей потребителя в электроэнергии [1, 4].Следовательно система управления на этом уровне должна носить оптимальный характер. В качестве критерия оптимальности может быть принята уровень надежности электроснабжения: минимум усредненного по времени математического ожидания относительного недоотпуска энергии различным группам потребителей с учетом весовых коэффициентов этих групп [4].
Возможно несколько вариантов управления
ФВЭУ на операционном уровне, в зависимости от структуры и параметров энергоустановки (таблица 1).В данной работе исследуется вариант САУ, при котором обеспечивается достижение цели управления с учетом критериев путем выбора наиболее рационального режима энергораспределения ФВЭУ:
- в условиях существующего или прогнозируемого дефицита энергии осуществляется распределение нагрузки с учетом приоритетов;
- при избытке вырабатываемой
энергии осуществляется ее накопление.Выбор режима энергораспределения осуществляется на основе анализа информации о текущем состоянии ФВЭУ и будущем состоянии первичных энергоресурсов.
Таблица 1 – ВАРИАНТЫ УПРАВЛЕНИЯ ФВЭУ
Актуальный и прогнозируемый энергетический баланс ФВЭУ |
|||
Избыток |
Недостаток |
||
Накопитель |
Есть |
И злишки энергии не теряются, а поступают в накопитель. |
Дефицит энергии восполняется за счет накопителей . |
Нет |
Согласование энергетических параметров нагрузки и источников с целью получения максимальной мощности при данном уровне поступления возобновленной энергии |
Поддержание оптимального соответствия между нагрузкой и преобразователями возобновляемой энергии путем включения и отключения необходимого числа потребителей в соответствии с их категорийностью |
Для рассматриваемой реализации САУ в работе [4] на основе имитационного алгоритма были получены конкретные рекомендации по выбору оптимального режима энергораспределения. При этом использовалась информация о текущем состоянии ФВЭУ и будущем состоянии первичных возобновляемых источников энергии.
Информация, характеризующая текущее состояние ФВЭУ:
Информация, характеризующая будущее состояние энергоресурсов:
Различные режимы функционирования ФВЭУ отличаются вариантами энергораспределения:
Изложенный выше подход позволил достичь поставленной в [4] цели, однако при этом за рамками исследования временно остались следующие задачи:
Решение этих задач представляет определенный интерес, следовательно, и развитие методов, предложенных в [4], является актуальным.
Для решения сформулированных выше задач в данной работе предлагается применить методы синтеза адаптивных АСУ сложными объектами управления (СОУ), основанные на теории информации и методах распознавания образов, предложенные в работах [5, 6].
Инструментальная система
[2] обеспечивает выявление статистических и детерминистских причинно-следственных взаимосвязей (если они есть), между событиями – причинами (факторами), и событиями – следствиями (классами), представленными в таблице 2 [4]:
Таблица 2 – ВЫБОР РЕЖИМА ЭНЕРГОРАСПРЕДЕЛЕНИЯ ФВЭУ
Классы |
Все возможные практически значимые режимы ФВЭУ, отличающиеся вариантами энергораспределения |
Признаки |
Текущий баланс энергосистемы; состояние накопителя; прогнозируемый интегральный баланс энергосистемы с учетом номинальной нагрузки. |
Обучающая |
Экспертные оценки целесообразности различных вариантов энергораспределения. |
Приведем краткое описание данного алгоритма, а затем рассмотрим пример его применения для решения задачи синтеза САУ ФВЭУ.
Основная идея предлагаемого алгоритма состоит в том, что применение обучающейся с учителем (экспертом) адаптивной модели позволяет выявить информационные зависимости между факторами и режимами энергораспределения, т.е. фактически конкретизировать абстрактную модель ФВЭУ и осуществить синтез САУ.
Шаг 1–й: разрабатываются описательные и классификационные шкал: формализующие факторы и режимы энергораспределения.
Шаг 2–й: формируется обучающая выборка, представляющая собой примеры того, какие режимы энергораспределения рекомендуются экспертами на основе информации об актуальном состоянии ФВЭУ и краткосрочного прогноза возобновляемых энергоресурсов.
Шаг 3–й (обучение): обучающая выборка обрабатывается в соответствии с математической моделью, обоснованной в работе [5]. В результате формируются обобщенные образы режимов энергораспределения ФВЭУ, а также определяется дифференцирующая мощность факторов и степень детерминированности режимов. Кроме того на этом шаге осуществляется подготовка данных для типологического анализа.
Шаг 4–й: факторы, не имеющие особой прогностической ценности, корректным способом удаляются из системы.
Шаг 5–й: если решающие правила построены (на шаге 3) и оптимизированы (на шаге 4), но качество их работы неизвестно, то пользоваться ими для принятия решений о выборе режима энергораспределения ФВЭУ преждевременно. Верификация решающих правил основана на использовании внутреннего критерия качества алгоритма распознавания и может быть выполнена в любой момент, например по требованию пользователя ФВЭУ или экспертов, но в обязательном порядке - после каждой адаптации.
Если результаты верификации конкретной модели ФВЭУ удовлетворяют разработчиков адаптивной САУ и заказчика, то САУ переводится из пилотного режима, при котором управляющие решения генерировались, но не исполнялись, в режим опытно–производственной эксплуатации, когда они реально начинают использоваться для управления.
Если же модель признана недостаточно адекватной, то необходимо расширять перечень факторов (так как значимые факторы могли быть упущены из анализа), увеличивать объем обучающей выборки, исключать артефакты, пересматривать экспертные оценки, переформировывать коллектив экспертов и предпринимать другие действия для улучшения качества модели (повторяя шаги 1 – 4).
Шаг 6–й. В подсистеме идентификации предусмотрен режим дозаписи распознаваемой выборки к обучающей, чтобы в последующем, когда станет известна степень адекватности управления, этой верифицированной (т.е. достоверной) информацией дополнить обучающую выборку и переформировать решающие правила (обучающая обратная связь). При адаптации могут быть легко изменены и описательные, и классификационные (оценочные) шкалы, что позволяет ввести новые режимы энергораспределения или факторы, а также учесть мнение пользователя ФВЭУ о наиболее рациональном выборе режима энергораспределения.
Необходимо отметить, что модель, предложенная в данной работе, имеет внутреннюю дифференциальную и интегральную валидность 100%. Это объясняется тем, что задача оказалась практически детерминистской. САУ будет принимать адекватные решения по выбору режима энергораспределения, если фактически встретившиеся сочетания факторов принадлежат генеральной совокупности, по отношению к которой обучающая выборка репрезентативна.
Инструментальная система [2] может быть применена не только для разработки модели ФВЭУ, но и для краткосрочного прогноза мощности первичных возобновляемых энергоресурсов.
При этом на основе обучающей выборки выявляются взаимосвязи между признаками (факторами) и классами распознавания, представленными в таблице 3.
Таблица 3 – ПРОГНОЗ ПЕРВИЧНЫХ ЭНЕРГОРЕСУРСОВ
Классы |
Ожидаемая мощность энергоресурсов (средние значения и стандартные отклонения солнечной радиации и скорости ветра). |
Признаки |
Средние значения и стандартные отклонения температуры, давления, влажности, солнечной радиации, облачности, скорости и направления ветра в течение последних десяти дней. |
Обучающая |
Метеоданные за представительный период времени |
Возможны различные варианты применения предлагаемого метода, отличающихся способом получения прогноза об ожидаемом состоянии возобновляемых энергоресурсов:
Каждый из этих вариантов обладает своими достоинствами и недостатками (таблица 4).
Таблица 4 -
СРАВНЕНИЕ
ИСТОЧНИКОВ
ИНФОРМАЦИИ
О БУДУЩЕМ
СОСТОЯНИИ
ПЕРВИЧНЫХ
ЭНЕРГОРЕСУРСОВ
Достоинства |
Недостатки |
|
1. Статистическая обработка метеоданных за ряд лет |
||
- данные доступны и могут быть статистически обработаны (получены математические ожидания мощности энергоресурсов и ошибки ее определения); - упрощает алгоритмы принятия решений об управляющем воздействии. |
- реальная динамика мощности энергоресурсов значительно отличается от средних значений; - для ряда регионов, в которых применение ФВЭУ наиболее целесообразно, данные могут отсутствовать; - не учитываются колебания климатом с периодом более времени метеонаблюдений. |
|
2. Метеопрогноз, разрабатываемый метеослужбами |
||
- не требует затрат; - доступен. |
- имеет слишком общий характер (отсутствуют количественные данные по интересующим параметрам); - имеет слишком редкую периодичность; - дается сразу для большой территории и, как следствие, имеет низкую достоверность для каждой конкретной точки. |
|
3. Краткосрочный прогноз САУ |
||
- дает количественную оценку всех значимых параметров; - имеет высокую достоверность; - позволяет учитывать специфические условия функционирования ФВЭУ и пожелания пользователя. |
- несколько усложняет и удорожает ФВЭУ из-за необходимости решения новой задачи метеопрогноза; - требует дополнительных исследований и разработок по выявлению существенных погодных факторов и их влияния на краткосрочный прогноз прихода солнечной и ветровой энергии для конкретной местности. |
Учитывая данные таблицы 4, авторы предлагают остановится на третьем варианте. Соответственно, задачу выработки рационального управления предлагается решать в два этапа:
Не исключается и комбинированное использование всех возможных источников информации о будущем состоянии первичных энергоресурсов.
Необходимость разрабатывать метеопрогноз для управления ФВЭУ сразу превращает ее в сложную динамическую многопараметрическую слабодетерминированную систему, т.е. систему, представляющую интерес не только в практическом, но и в научном плане.
Возникает вопрос об определении значения периода времени, на который оправдано разрабатывать прогноз. Очень длительный период прогнозирования вряд ли целесообразен, так как, во-первых, долгосрочные прогнозы позволяют предсказывать лишь усредненные показатели и обладают крайне низкой достоверностью для высокочастотных компонент процессов, и, во-вторых, такие прогнозы фактически не могут быть применены на практике из-за ограниченности ресурсов энергонакопителя. Таким образом, целесообразно ориентироваться на краткосрочные прогнозы.
В соответствии с приведенным выше алгоритмом и основываясь на результатах работы [4] рассмотрим пример синтеза САУ ФВЭУ.
Шаг 1: сконструируем классификационные и описательные шкалы (таблицы 5 и 6):
Таблица 5 –
КЛАССИФИКАЦИОННАЯ
ШКАЛА
(РЕЖИМЫ
ЭНЕРГОРАСПРЕДЕЛЕНИЯ)
№ |
Наименование градации |
1 |
Режим- 1: все группы потребителей откл. Заряд накопителя; |
2 |
Режим- 2: 2-4 группы потребителей откл. Заряд накопителя; |
3 |
Режим- 3: 3-4 группы потребителей откл. Заряд накопителя; |
4 |
Режим- 4: 4 группа потребителей откл. Заряд накопителя; |
5 |
Режим- 5: 3 группа потребителей откл. Заряд накопителя; |
6 |
Режим- 6: все группы потребителей ПОДКЛ. Заряд накопителя; |
7 |
Режим- 7: 2-4 группы потребителей откл. Разряд накопителя; |
8 |
Режим- 8: 3-4 группы потребителей откл. Разряд накопителя; |
9 |
Режим- 9: 4 группа потребителей откл. Разряд накопителя; |
10 |
Режим-10: 3 группа потребителей откл. Разряд накопителя; |
11 |
Режим-11: все группы потребителей ПОДКЛ. Разряд накопителя; |
Таблица 6 – ОПИСАТЕЛЬНЫЕ ШКАЛЫ (ФАКТОРЫ)
Кодирование |
Наименования шкал градаций |
||
Из раб. [1] |
Новое |
||
Шкала 1: "Текущий баланс энергосистемы" |
|||
X |
1 |
1 |
> 0 для 1-й, 2-й, 3-й, 4-й групп нагрузок |
2 |
2 |
> 0 только для 1-й, 2-й, 3-й групп нагрузок |
|
3 |
3 |
> 0 только для 1-й, 2-й групп нагрузок |
|
4 |
4 |
> 0 только для 1-й группы нагрузок |
|
5 |
5 |
< 0 для 1-й группы нагрузок |
|
Шкала 2: "Состояние заряженности аккумуляторной батареи" |
|||
Y |
1 |
6 |
Накопитель полностью заряжен 95% <= Q <= 100% |
2 |
7 |
Накопитель хорошо заряжен 75% <= Q < 95% |
|
3 |
8 |
Накопитель слабо заряжен 30% <= Q < 75% |
|
4 |
9 |
Накопитель полностью разряжен 0% <= Q <= 30% |
|
Шкала 3: "Краткосрочный прогноз поступления возобновляемой энергии" |
|||
Z |
1 |
10 |
Прогнозируемый интегральный баланс положителен |
2 |
11 |
Прогнозируемый интегральный баланс отрицателен |
Шаг 2:
с использованием приведенных выше шкал представим экспертные оценки целесообразности выбора различных режимов энергораспределения из работы [4] в форме, соответствующей требованиям инструментальной системы [2] (таблица 7):Таблица 7 – ОБУЧАЮЩАЯ ВЫБОРКА
№ |
Факторы |
Режимы |
№ |
Факторы |
Режимы |
||||||||||||||||||
X |
Y |
Z |
X |
Y |
Z |
||||||||||||||||||
1 |
1 |
6 |
10 |
11 |
21 |
1 |
6 |
11 |
6 |
||||||||||||||
2 |
1 |
7 |
10 |
10 |
11 |
22 |
1 |
7 |
11 |
5 |
6 |
||||||||||||
3 |
1 |
8 |
10 |
9 |
10 |
11 |
23 |
1 |
8 |
11 |
4 |
5 |
6 |
||||||||||
4 |
1 |
9 |
10 |
8 |
9 |
10 |
11 |
24 |
1 |
9 |
11 |
3 |
4 |
5 |
6 |
||||||||
5 |
2 |
6 |
10 |
10 |
11 |
25 |
2 |
6 |
11 |
5 |
6 |
||||||||||||
6 |
2 |
7 |
10 |
9 |
10 |
11 |
26 |
2 |
7 |
11 |
4 |
5 |
6 |
||||||||||
7 |
2 |
8 |
10 |
8 |
9 |
10 |
11 |
27 |
2 |
8 |
11 |
3 |
4 |
5 |
6 |
||||||||
8 |
2 |
9 |
10 |
7 |
8 |
9 |
10 |
11 |
28 |
2 |
9 |
11 |
2 |
3 |
4 |
5 |
6 |
||||||
9 |
3 |
6 |
10 |
9 |
10 |
11 |
29 |
3 |
6 |
11 |
4 |
5 |
6 |
||||||||||
10 |
3 |
7 |
10 |
8 |
9 |
10 |
11 |
30 |
3 |
7 |
11 |
3 |
4 |
5 |
6 |
||||||||
11 |
3 |
8 |
10 |
7 |
8 |
9 |
10 |
11 |
31 |
3 |
8 |
11 |
2 |
3 |
4 |
5 |
6 |
||||||
12 |
3 |
9 |
10 |
1 |
7 |
8 |
9 |
10 |
11 |
32 |
3 |
9 |
11 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
13 |
4 |
6 |
10 |
8 |
9 |
10 |
11 |
33 |
4 |
6 |
11 |
3 |
4 |
5 |
6 |
||||||||
14 |
4 |
7 |
10 |
7 |
8 |
9 |
10 |
11 |
34 |
4 |
7 |
11 |
2 |
3 |
4 |
5 |
6 |
||||||
15 |
4 |
8 |
10 |
1 |
7 |
8 |
9 |
10 |
11 |
35 |
4 |
8 |
11 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
16 |
4 |
9 |
10 |
1 |
1 |
7 |
8 |
9 |
36 |
4 |
9 |
11 |
1 |
1 |
2 |
3 |
4 |
||||||
17 |
5 |
6 |
10 |
7 |
8 |
9 |
10 |
11 |
37 |
5 |
6 |
11 |
2 |
3 |
4 |
5 |
6 |
||||||
18 |
5 |
7 |
10 |
1 |
7 |
8 |
9 |
10 |
11 |
38 |
5 |
7 |
11 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
19 |
5 |
8 |
10 |
1 |
1 |
7 |
8 |
9 |
10 |
11 |
39 |
5 |
8 |
11 |
1 |
1 |
2 |
3 |
4 |
5 |
6 |
||
20 |
5 |
9 |
10 |
1 |
1 |
1 |
7 |
8 |
9 |
10 |
11 |
40 |
5 |
9 |
11 |
1 |
1 |
1 |
2 |
3 |
4 |
5 |
6 |
Шаг 3:
на основе математической модели, предложенной в [5] и представленных выше исходных данных получим матрицу информативностей (таблица 8), которая показывает, какое количество информации о целесообразности выбора того или иного режима энергораспределения получает САУ, если установлено действие некоторого фактора.
Таблица 8 – МАТРИЦА ИНФОРМАТИВНОСТЕЙ
№ |
Режимы энергораспределения ФВЭУ |
Дифференцирующая мощность |
|||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
|||
Факторы |
1 |
--- |
--- |
--- |
0,05 |
0,21 |
0,34 |
--- |
--- |
0,05 |
0,24 |
0,47 |
0,165 |
2 |
--- |
--- |
--- |
0,10 |
0,20 |
0,17 |
--- |
--- |
0,10 |
0,23 |
0,17 |
0,092 |
|
3 |
-0,39 |
0,03 |
0,04 |
0,08 |
0,02 |
-0,01 |
0,03 |
0,04 |
0,08 |
0,05 |
-0,01 |
0,131 |
|
4 |
0,13 |
0,17 |
0,12 |
--- |
-0,07 |
-0,09 |
0,17 |
0,12 |
--- |
-0,19 |
-0,25 |
0,146 |
|
5 |
0,39 |
0,21 |
--- |
-0,12 |
-0,18 |
-0,21 |
0,21 |
--- |
-0,12 |
-0,15 |
-0,21 |
0,203 |
|
6 |
--- |
--- |
-0,04 |
0,06 |
0,16 |
0,25 |
--- |
-0,04 |
0,06 |
0,19 |
0,25 |
0,112 |
|
7 |
-0,45 |
-0,03 |
-0,02 |
0,02 |
0,08 |
0,06 |
-0,03 |
-0,02 |
0,02 |
0,11 |
0,06 |
0,151 |
|
8 |
0,03 |
0,07 |
0,02 |
0,02 |
-0,04 |
-0,07 |
0,07 |
0,02 |
0,02 |
-0,01 |
-0,07 |
0,048 |
|
9 |
0,32 |
0,14 |
0,05 |
-0,07 |
-0,13 |
-0,16 |
0,14 |
0,05 |
-0,07 |
-0,22 |
-0,16 |
0,165 |
|
10 |
--- |
--- |
--- |
--- |
--- |
--- |
0,42 |
0,39 |
0,38 |
0,38 |
0,38 |
0,203 |
|
11 |
-0,01 |
0,41 |
0,39 |
0,37 |
0,37 |
0,37 |
--- |
--- |
--- |
--- |
--- |
0,201 |
|
Детерминированность |
0,25 |
0,13 |
0,12 |
0,13 |
0,17 |
0,20 |
0,13 |
0,12 |
0,13 |
0,20 |
0,24 |
0,165 |
Данная матрица информативностей и представляет собой конкретную информационную модель ФВЭУ, на основе которой САУ может принимать решения о выборе наиболее целесообразного режима энергораспределения. Выбирается тот режим, о котором в системе факторов
{X, Y, Z} содержится максимальное количество информации (таблица 9):
Таблица 9 – ВЫБОР РЕЖИМА ФВЭУ (ПРИ
X=1, Y=1, Z=1)
Код |
Наименование режима |
Критерий |
Гистограмма |
11 |
Режим-11: все гр.потр.ПОДКЛ. Разряд АБ |
80 |
|
10 |
Режим-10: 3 гр.потр. откл. Разряд АБ |
67 |
|
9 |
Режим- 9: 4 гр.потр. откл. Разряд АБ |
56 |
|
6 |
Режим- 6: все гр.потр.ПОДКЛ. Заряд АБ |
43 |
|
8 |
Режим- 8: 3-4 гр.потр. откл. Разряд АБ |
33 |
|
5 |
Режим- 5: 3 гр.потр. откл. Заряд АБ |
24 |
|
7 |
Режим- 7: 2-4 гр.потр. откл. Разряд АБ |
22 |
|
1 |
Режим- 1: все гр.потр. откл. Заряд АБ |
-1 |
|
4 |
Режим- 4: 4 гр.потр. откл. Заряд АБ |
-5 |
|
3 |
Режим- 3: 3-4 гр.потр. откл. Заряд АБ |
-33 |
|
2 |
Режим- 2: 2-4 гр.потр. откл. Заряд АБ |
-42 |
|
Кратко рассмотрим как в предлагаемой технологии решаются другие задачи, сформулированные в начале работы.
Задача №1: "Взвешенное обобщение экспертных оценок рациональности режимов энергораспределения".
В работе [1] и взятой из нее обучающей выборке (таблица 7), мнения экспертов по выбору рационального режима энергораспределения просто сведены в одну таблицу. При этом возникает вопрос о том, как наличие того или иного фактора влияет на выбор режима энергораспределения. В работе [1] этот вопрос решается применением экспертной системы. В предлагаемой технологии ответом на этот вопрос является таблица 8, представляющая собой результат взвешивания экспертных оценок на основе математической модели, предложенной в работе [5].
Задача №2: "Автоматизация экспертных оценок и их замена оценками непосредственного пользователя ФВЭУ".
В предложенной технологии нет необходимости привлекать экспертов для построения модели ФВЭУ и разработки алгоритмов принятия решений в САУ. Имеется возможность поставки "не обученной" ФВЭУ заказчику. В этом случае ему предлагается самому сформировать классификационные и описательные шкалы и градации (возможно, вместе с поставщиком) и некоторое время самостоятельно принимать решения о выборе режимов энергораспределения, формируя на этой основе обучающую выборку. Используя режим адаптации САУ могут имитироваться автоматизированные решения. Если их качество устраивает заказчика, то система может быть переведена в автоматизированный режим принятия решений о выборе режима энергораспределения. В дальнейшем при необходимости, обучающая выборка может дополняться или изменяться оценки, приведенные в ней, в результате чего через некоторое время САУ будет принимать решения наиболее удовлетворительным для заказчика образом.
Задача №3: "Определение дифференцирующей мощности факторов относительное режимов энергораспределения и контролируемое снижение размерности модели".
В работе [4] факторы рассматриваются как имеющие одинаковую ценность для принятия решения, однако анализ обучающей выборки в соответствии с математической моделью [5] показывает, что это далеко не так.Дифференцирующей мощностью фактора называется среднее количество полезной информации, которое САУ получает для выбора режима, если установлено, что данный фактор действует (таблица 10).
Итак, факторы имеют различную дифференцирующую мощность, которая может быть установлена. Из этого следует по крайней мере два важных вывода.
Во-первых, нет необходимости перед построением модели ФВЭУ пытаться решить задачу выбора наиболее существенных факторов (как это обычно предлагается в факторном анализе). Можно исследовать все факторы, о которых есть систематическая информация.
Во-вторых, незначимые факторы всегда можно удалить из модели ФВЭУ без ущерба для ее эффективности и адекватности, тем самым сократив эксплуатационные расходы на сбор и обработку информации САУ.
Таблица 10 – ДИФФЕРЕНЦИРУЮЩАЯ МОЩНОСТЬ ФАКТОРОВ
Код |
Наименование
фактора |
Дифференцирующая мощность |
||
Бит |
Сумма |
|||
Бит |
% |
|||
10 |
Прогнозируемый интегральный баланс > 0 |
0,204 |
0,204 |
12,562 |
5 |
Баланс < 0 для 1 гр.нагрузок |
0,204 |
0,408 |
25,121 |
11 |
Прогнозируемый интегральный баланс < 0 |
0,201 |
0,609 |
37,519 |
1 |
Баланс > 0 для 1,2,3,4 гр.нагрузок |
0,166 |
0,775 |
47,732 |
9 |
АБ полностью разряжена. 0% <= Q <= 30% |
0,166 |
0,940 |
57,941 |
7 |
АБ хорошо заряжена. 75% <= Q < 95% |
0,151 |
1,091 |
67,252 |
4 |
Баланс > 0 для 1 гр.нагрузок |
0,146 |
1,238 |
76,268 |
3 |
Баланс > 0 для 1,2 гр.нагрузок |
0,132 |
1,370 |
84,399 |
6 |
АБ заряжена полностью. 95% <= Q <= 100% |
0,113 |
1,482 |
91,347 |
2 |
Баланс > 0 для 1,2,3 гр.нагрузок |
0,092 |
1,575 |
97,034 |
8 |
АБ слабо заряжена. 30% <= Q < 75% |
0,048 |
1,623 |
100,00 |
Задача №4: "Определение силы влияния факторов на принятие решения о переключении ФВЭУ в различные режимы энергораспределения".
Как видно из таблицы 7, различные факторы содержат различное количество информации для принятия решения о выборе режима энергораспределения.Каждый режим может быть охарактеризован единственной последовательностью факторов, в которой они ранжированы в порядке убывания количества информации в пользу выбора данного режима. Такая последовательность называется информационным портретом режима ФВЭУ [2].
Аналогично, каждый фактор может быть охарактеризован единственной последовательностью режимов, в которой они ранжированы в порядке убывания количества информации в пользу их выбора, содержащейся в данном факторе [2].
Информационные портреты режимов и факторов могут быть представлены в графическом виде.
Задача №5: "Определение степени детерминированности режимов энергораспределения ФВЭУ".
Различные режимы отличаются друг от друга средним количеством информации о выборе или не выборе данного режима, содержащейся в факторах. Если выбор некоторого режима однозначно, т.е. детерминистским образом, определяется определенным фактором, то этот фактор будет содержать максимальное возможное количество информации о выборе данного режима и этот режим будет иметь высокую степень детерминированности (определенности). Если же наоборот, в обобщенном образе режима все факторы содержат небольшое количество информации, то данный режим будет слабодетерминированным и его выбор неопределенным (таблица 11):Таблица 11 – ДЕТЕРМИНИРОВАННСТЬ РЕЖИМОВ ФВЭУ
Код |
Наименование режима (градации классификационной шкалы) |
Детерминированность |
||
Бит |
Сумма |
|||
Бит |
% |
|||
1 |
Режим- 1: все гр.потр. откл. Заряд АБ |
0,252 |
0,252 |
13,904 |
11 |
Режим-11: все гр.потр.ПОДКЛ. Разряд АБ |
0,237 |
0,488 |
26,980 |
6 |
Режим- 6: все гр.потр.ПОДКЛ. Заряд АБ |
0,199 |
0,688 |
37,995 |
10 |
Режим-10: 3 гр.потр. откл. Разряд АБ |
0,195 |
0,883 |
48,795 |
5 |
Режим- 5: 3 гр.потр. откл. Заряд АБ |
0,166 |
1,049 |
57,991 |
7 |
Режим- 7: 2-4 гр.потр. откл. Разряд АБ |
0,134 |
1,184 |
65,405 |
2 |
Режим- 2: 2-4 гр.потр. откл. Заряд АБ |
0,133 |
1,316 |
72,737 |
9 |
Режим- 9: 4 гр.потр. откл. Разряд АБ |
0,128 |
1,444 |
79,786 |
4 |
Режим- 4: 4 гр.потр. откл. Заряд АБ |
0,126 |
1,570 |
86,747 |
8 |
Режим- 8: 3-4 гр.потр. откл. Разряд АБ |
0,121 |
1,691 |
93,422 |
3 |
Режим- 3: 3-4 гр.потр. откл. Заряд АБ |
0,119 |
1,810 |
100,00 |
Слабодетерминированные режимы, как правило, являются сходными сразу с несколькими сильнодетерминированными. В инструментальной системе реализована режим, обеспечивающий удаление из модели тех классов, которые сводятся к суперпозиции некоторого минимального количества слабо коррелирующих друг с другом классов.
Задача №6: "Определение фактической приоритетности нагрузок".
В модели ФВЭУ, предложенной в работе [1], все нагрузки методом экспертной оценки были разделены на 4 группы приоритетности. Однако, отнесение нагрузок к той или иной группе, а также определение весового коэффициента приоритетности этих групп носят усредненный характер по всем потребителям и не учитывают степень важности этих нагрузок для конкретного индивидуального потребителя. В технологии, предлагаемой в данной работе, нет необходимости вообще вводить группы приоритетности, так как модель обеспечивает обработку до 4000 факторов. Это означает, что просто все нагрузки могут быть перечислены как градации – факторы в соответствующей описательной шкале. В результате, после формирования обучающей выборки на основе решений пользователя ФВЭУ, выяснится порядок, в котором нагрузки обслуживаются в случае дефицита внешних энергетических ресурсов.
Задача №7: Исследование сходства и различия режимов ФВЭУ и факторов.
Данная задача решается в два этапа:1) формирование кластеров и конструктов режимов ФВЭУ и факторов;
2) содержательное сравнение режимов ФВЭУ и факторов.
Кластеры формируются инструментальной системой, на основе сравнения профилей режимов и факторов, представленных в таблице 7. Конструкт представляет собой систему наиболее сильно отличающихся кластеров (со спектром промежуточных кластеров). На рисунке 3 приведена семантическая сеть, построенная по результатам кластерно-конструктивного анализа режимов энергораспределения ФВЭУ.
Содержательное сравнение режимов (факторов) друг с другом представляет собой информационные портреты двух режимов, в которых факторы соединены друг с другом линиями, цвет и толщина которых соответствуют знаку и величине их вклада в сходство или различие данных двух режимов (факторов). Графическое отображение этой информации называется когнитивной диаграммой [2] (рисунок 4).
Выводы:
Рисунок 3. Результаты кластерно-конструктивного анализа режимов энергораспределения ФВЭС
Рисунок 4. Диаграмма содержательного сравнения двух режимов энергораспределения ФВЭУ
Литература