УДК 4.08

Автоматизированный системно-когнитивный анализ характеристик оружий в игре Counter-Strike: Global Offensive

Ващенко Александр Юрьевич студент факультета ПИ, группы ИТ2002 asspirine02@yandex.ru

Баженов Александр Андреевич студент факультета ПИ, группы ИТ2002 Vorobushec13@gmail.com

Кубанский государственный аграрный университет имени И.Т.Трубилина, Краснодар, Россия

Целью данной работы является изучение характеристик оружия из игры Counter-Strike: Global Offensive. Достижение данной цели представляет большой личный интерес. Для нас это позволит получить знания в работе с универсальной когнитивной аналитической системой «Эйдос-Х++», а также получить зачет. Для достижения поставленной цели применяется Автоматизированный системно-когнитивный анализ (АСК-анализ) и его программный инструментарий – интеллектуальная система «Эйдос».

Ключевые слова: АВТОМАТИЗИРОВАННЫЙ СИСТЕМНО-КОГНИТИВНЫЙ АНАЛИЗ, АСК-АНАЛИЗ, СИСТЕМА «ЭЙДОС».

Automated system-cognitive analysis of the characteristics of weapons in the game Counter-Strike: Global Offensive

Vaschenko Alexander Yurievich student of the faculty of PI, group IT2002 asspirine02@yandex.ru

Bazhenov Alexander Andreevich student of the faculty of PI, group IT2002 Vorobushec13@gmail.com

Kuban State Agrarian University named after I.T. Trubilin, Krasnodar, Russia

The purpose of this work is to study the characteristics of weapons from the game Counter-Strike: Global Offensive. The achievement of this goal is of great personal interest. For us, this will allow us to gain knowledge in working with the universal analytical system "Eidos-X ++", as well as get a credit. To achieve this goal, the Automated System-Cognitive Analysis (ASK-analysis) and its software tools are used - the intelligent system "Eidos".

Key words: AUTOMATED SYSTEM-COGNITIVE ANALYSIS, ASC-ANALYSIS, "EIDOS" SYSTEM.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	2
ЗАДАЧА 1: КОГНИТИВНАЯ СТРУКТУРИЗАЦИЯ ПРЕДМЕТНОЙ ОБЛАСТИ	5
ЗАДАЧА 2: ПОДГОТОВКА ИСХОДНЫХ ДАННЫХ И ФОРМАЛИЗАЦИЯ ПРЕДМЕТНО ОБЛАСТИ	
ЗАДАЧА 3: СИНТЕЗ И ВЕРИФИКАЦИЯ СТАТИСТИЧЕСКИХ И СИСТЕМНО-КОГНИТ МОДЕЛЕЙ И ВЫБОР НАИБОЛЕЕ ДОСТОВЕРНОЙ ИЗ НИХ ДЛЯ РЕШЕНИЯ ЗАДАЧ	`ИВНЫХ 11
ЗАДАЧА 4: РЕШЕНИЕ РАЗЛИЧНЫХ ЗАДАЧ В НАИБОЛЕЕ ДОСТОВЕРНОЙ МОДЕЛИ	17
Подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, иден	
Подзадача 4.2. Поддержка принятия решений (SWOT-анализ)	18
Подзадача 4.3. Исследование моделируемой предметной области путем исследовани	22
4.3.1. Когнитивные диаграммы классов	
4.3.2. Агломеративная когнитивная кластеризация классов	
4.3.3. Когнитивные диаграммы значений факторов	
4.3.4. Агломеративная когнитивная кластеризация значений факторов	
4.3.5. Нелокальные нейроны и нелокальные нейронные сети	
4.3.7. Когнитивные функции	
4.3.8. Сила и направление влияния значений характеристик оружия и сила влияни характеристик на класс (вид) оружия	я этих
4.3.9. Степень детерминированности классов оружия его характеристиками	38
7. ВЫВОДЫ	39
СПИСОК ПИТЕРАТУРЫ	40

Введение

Целью данной работы является изучение характеристик оружия из игры Counter-Strike: Global Offensive.

Достижение данной цели представляет большой личный интерес. Для нас это позволит получить знания в работе с универсальной когнитивной аналитической системой «Эйдос-Х++», а также получить зачет.

АСК-анализ предполагает, что для достижения поставленной цели необходимо решить следующие задачи, которые получаются путем декомпозиции цели и являются этапами ее достижения:

Задача 1: когнитивная структуризация предметной области.

Задача 2: подготовка исходных данных и формализация предметной области.

<u>Задача 3:</u> синтез и верификация статистических и системнокогнитивных моделей и выбор наиболее достоверной модели.

Задача 4: решение различных задач в наиболее достоверной модели:

- подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, идентификация);
 - подзадача 4.2. Поддержка принятия решений;
- подзадача 4.3. Исследование моделируемой предметной области путем исследования ее модели (когнитивные диаграммы классов и значений факторов, агломеративная когнитивная кластеризация классов и значений факторов, нелокальные нейроны и нейронные сети, 3d-интегральные когнитивные карты, когнитивные функции).

Эти задачи, по сути, представляют собой **этапы** автоматизированного системно-когнитивный анализа (АСК-анализ), который поэтому и предлагается применить для их решения.

АСК-анализ представляет собой метод искусственного интеллекта, разработанный проф. Е.В. Луценко в 2002 году для решения широкого класса задач идентификации, прогнозирования, классификации, диагностики, поддержки принятия решений и исследования моделируемой предметной области путем исследования ее модели. АСК-анализ доведен до инновационного уровня благодаря тому, что имеет свой программный инструментарий — универсальную когнитивную аналитическую систему «Эйдос-Х++» (система «Эйдос»).

Система «Эйдос» выгодно отличается от других интеллектуальных систем следующими параметрами:

- разработана в универсальной постановке, не зависящей от предметной области. Поэтому она является универсальной и может быть применена во многих предметных областях (http://lc.kubagro.ru/aidos/index.htm), в которых не требуется автоматического, т.е. без непосредственного участия человека в реальном времени решения задач идентификации, прогнозирования, приятия решений и исследования предметной области;

- находится в полном открытом бесплатном доступе (http://lc.kubagro.ru/aidos/_Aidos-X.htm), причем с актуальными исходными текстами (http://lc.kubagro.ru/_AIDOS-X.txt);
- является одной из первых отечественных систем искусственного интеллекта персонального уровня, т.е. не требует от пользователя специальной подготовки в области технологий искусственного интеллекта: «имеет нулевой порог входа» (есть акт внедрения системы «Эйдос» 1987 года) (http://lc.kubagro.ru/aidos/aidos02/PR-4.htm);
- обеспечивает устойчивое выявление в сопоставимой форме силы и направления причинно-следственных зависимостей в неполных зашумленных взаимозависимых (нелинейных) данных очень большой размерности числовой и не числовой природы, измеряемых в различных типах шкал (номинальных, порядковых и числовых) и в различных единицах измерения (т.е. не предъявляет жестких требований к данным, которые невозможно выполнить, а обрабатывает те данные, которые есть);
- содержит большое количество локальных (поставляемых с инсталляцией) и облачных учебных и научных Эйдос-приложений (в настоящее время их 31 и 208, соответственно) (http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf);
- поддерживает on-line среду накопления знаний и широко используется во всем мире (http://aidos.byethost5.com/map5.php);
- обеспечивает мультиязычную поддержку интерфейса на 51 языке. Языковые базы входят в инсталляцию и могут пополняться в автоматическом режиме;
- наиболее трудоемкие в вычислительном отношении операции синтеза моделей и распознавания реализует с помощью графического процессора (GPU), что на некоторых задачах обеспечивает ускорение решение этих задач в несколько тысяч раз, что реально обеспечивает интеллектуальную обработку больших данных, большой информации и больших знаний (графический процессор должен быть на чипсете NVIDIA);
- обеспечивает преобразование исходных эмпирических данных в информацию, а ее в знания и решение с использованием этих знаний задач классификации, поддержки принятия решений и исследования предметной области путем исследования ее системно-когнитивной модели, генерируя при этом очень большое количество табличных и графических выходных форм (развития когнитивная графика), у многих из которых нет никаких аналогов в других системах (примеры форм можно посмотреть в работе: http://lc.kubagro.ru/aidos/aidos18 LLS/aidos18 LLS.pdf);

- хорошо имитирует человеческий стиль мышления: дает результаты анализа, понятные экспертам на основе их опыта, интуиции и профессиональной компетенции;
- вместо того, чтобы предъявлять к исходным данным практически требования (вроде нормальности неосуществимые распределения, абсолютной точности и полных повторностей всех сочетаний значений факторов и их полной независимости и аддитивности) автоматизированный системно-когнитивный анализ (АСК-анализ) предлагает без какой-либо обработки осмыслить предварительной ЭТИ данные преобразовать их в информацию, а затем преобразовать эту информацию в знания путем ее применения для достижения целей (т.е. для управления) и решения классификации, поддержки принятия решений задач содержательного эмпирического исследования моделируемой предметной области.

В чем сила подхода, реализованного в системе Эйдос? В том, что она реализует подход, эффективность которого не зависит от того, что мы думаем о предметной области и думаем ли вообще. Она формирует модели непосредственно на основе эмпирических данных, а не на основе наших представлений о механизмах реализации закономерностей в этих данных. Именно поэтому Эйдос-модели эффективны даже если наши представления о предметной области ошибочны или вообще отсутствуют.

В этом и слабость этого подхода, реализованного в системе Эйдос. Модели системы Эйдос - это феноменологические модели, отражающие эмпирические закономерности в фактах обучающей выборки, т.е. они не отражают причинно-следственного механизма детерминации, а только сам факт и характер детерминации. Содержательное объяснение этих эмпирических закономерностей формулируется уже на теоретическом уровне познания в теоретических научных законах.

Всем этим и обусловлен выбор АСК-анализа и его программного инструментария – интеллектуальной системы «Эйдос» в качестве метода и инструмента решения поставленной проблемы и достижения цели работы (рисунок 1).

Последовательность обработки данных, информации и знаний в системе «Эйдос», повышение уровня системности данных, информации и знаний, повышение уровня системности моделей

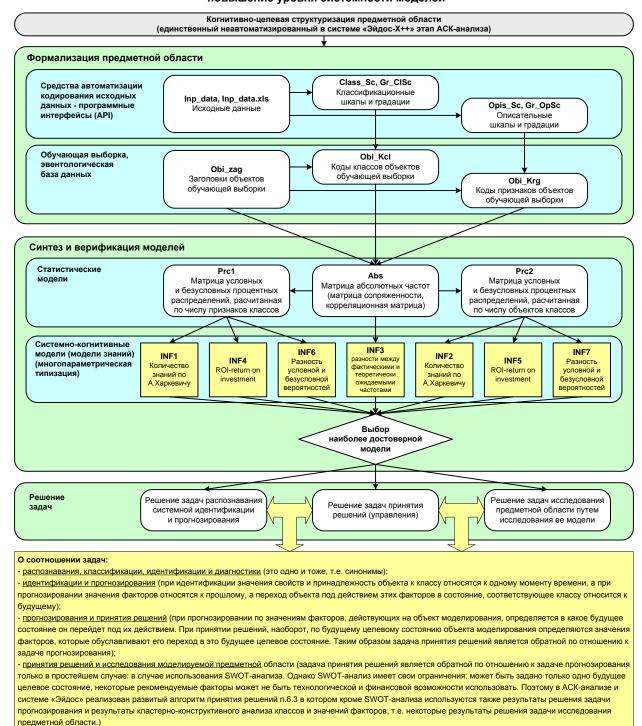


Рисунок 1. Последовательность решения задач в АСК-анализе и системе «Эйдос»

Рассмотрим решение поставленных задач в подробном численном примере.

Задача 1: когнитивная структуризация предметной области

На этапе когнитивно-целевой структуризации предметной области мы неформализуемым путем решаем на качественном уровне, что будем рассматривать в качестве факторов, действующих на моделируемый объект (причин), а что в качестве результатов действия этих факторов (последствий).

При этом необходимо отметить, что системно-когнитивные модели (СК-модели) отражают лишь сам факт наличия зависимостей между значениями факторов и результатами их действия. Но они не отражают причин и механизмов такого влияния.

Это значит:

- <u>во-первых</u>, что содержательная интерпретация СК-моделей это компетенция специалистов-экспертов хорошо разбирающихся в данной предметной области. Иногда встречается ситуация, когда и то, что на первый взгляд является причинами, и то, что казалось бы является их последствиями, на самом деле является последствиями неких глубинных причин, которых мы не видим и никоим образом непосредственно не отражаем в модели;
- <u>во-вторых</u>, даже если содержательной интерпретации не разработано, то в принципе это не исключает возможности пользоваться ими на практике для достижения заданных результатов и поставленных целей, т.е. для управления.

В данной работе в качестве классификационных шкал выберем категорию (класс) оружия, как она обозначается в самой игре (таблица 1), а в качестве факторов, влияющих на эти результаты — его стоимость, заработок за убийство, окупаемость, мобильность, скорострельность (в минуту), урон, урон в секунду, бронепробиваемость, мощность прострела, размер магазина, максимальный боезапас, время перезарядки (в сек.), отдача, дистанция поражения, разброс (таблица 2):

Таблица 1 – Классификационная

	шкала
Код	Наименование
1	Category

Таблица 2 – Описательные шкалы

Код	Наименование								
1	Cost (\$)								
2	Kill Award (\$)								
3	Kills To Rebuy								
4	Max Speed								
5	Rate of fire								
6	DPS								
7	Armor Penetration (%)								
8	Penetration								
9	Clip Size								
10	Max Ammo								
11	Reload (sec)								
12	Recoil Magnitude								
13	Accurate range (m)								
14	Spread								

Задача 2: подготовка исходных данных и формализация предметной области

Исходные данные для данной статьи (рисунок 2) получены из самой игры, а также из других подробных таблиц по оружию в игре, найденных в интернете.

	Α	В	С	D	Е	F	G	Н	-1	J	K	L	M	N	0	Р	Q
1	Name	Category	Cost (\$)	Kill Award (\$)	Kills To Rebuy	Max Speed	Rate of fire	Damage	DPS	Armor Penetration (%)	Penetration	Clip Size	Max Ammo	Reload (sec)	Recoil Magnitude	Accurate range (m)	Spread
2	AK-47	Rifle	2 700	300	9,00	215	600	36	360	77,50	2	30	90	2,50	30,0	24	0,60
3	AUG	Rifle	3 300	300	11,00	220	666	28	311	90,00	2	30	90	3,80	24,0	31	0,50
4	AWP	Rifle	4 750	100	47,50	200	41	115	79	97,50	2,5	10	30	3,60	78,0	76	0,20
5	CZ75 Auto	Pistol	500	100	5,00	240	600	31	310	77,65	1	12	12	2,70	31,0	12	3,00
6	Desert Eagle	Pistol	700	300	2,33	230	267	73	325	93,20	2	7	35	2,20	48,2	27	2,00
7	Dual Berettas	Pistol	400	300	1,33	240	500	38	317	52,50	1	30	120	3,80	27,0	18	2,00
8	FAMAS	Rifle	2 050	300	6,83	220	666	30	333	70,00	2	25	90	3,30	20,0	16	0,60
9	Five-SeveN	Pistol	500	300	1,67	240	400	32	213	91,50	1	20	100	2,20	25,0	15	2,00
10	G3SG1	Rifle	5 000	300	16,67	215	240	80	320	82,50	2,5	20	90	4,70	30,0	73	0,30
11	Galil AR	Rifle	1 800	300	6,00	215	666	30	333	77,50	2	35	90	3,00	21,0	18	0,60
12	Glock 18	Pistol	200	300	0,67	240	400	30	200	47,00	1	20	120	2,20	18,0	22	2,00
13	M249	Heavy	5 200	300	17,33	195	750	32	400	80,00	2	100	200	5,70	25,0	17	2,00
14	M4A1	Rifle	3 100	300	10,33	225	666	33	366	70,00	2	30	90	3,10	23,0	30	0,60
15	M4A1-S	Rifle	2 900	300	9,67	225	600	33	330	70,00	2	25	75	3,10	25,0	30	0,60
16	MAC-10	SMG	1 050	600	1,75	240	800	29	387	47,50	1	30		2,60	18,0	12	0,60
17	MAG-7	Heavy	1 300	900	1,44	225	71	240	284	75,00	1	5	32	2,40	165,0	3	40,00
18	MP7	SMG	1 500	600	2,50	220	800	29	387	62,50	1	30	120	3,10	16,0	1 5	0,60
19	MP9	SMG	1 250	600	2,08	240	857	26	371	50,00	1	30	120	2,10	19,0	17	0,60
20	Negev	Heavy	1 700	300	5,67	150	800	35	467	75,00	2	150	300	5,70	20,0	13	2,00
21	Nova	Heavy	1 050	900	1,17	220	68	234	265	50,00	0	8	32	3,70	143,0	3	40,00
22	P2000	Pistol	200	300	0,67	240	352	35	205	50,50	1	13	52	2,20	26,0	24	2,00
23	P250	Pistol	300	300	1,00	240	400	38	253	64,00	1	13	26	2,20	26,0	1 5	2,00
24	P90	SMG	2 350	300	7,83	230	857	26	371	69,00	1	50	100	3,30	16,0	11	1,00
25	Bizon	SMG	1 400	600	2,33	240	750	27	338	57,50	1	64	120	2,40	18,0	11	1,00
26	Sawed-Off	Heavy	1 100	900	1,22	210	71	256	303	75,00	1	7	32	3,20	143,0	2	62,00
27	SCAR-20	Rifle	5 000	300	16,67	215	240	80	320	82,50	2,5	20	90	3,10	31,0	73	0,30
28	SG 553	Rifle	3 000	300	10,00	210	666	30	333	100,00	2	30	90	2,80	28,0	26	0,60
29	SSG 08	Rifle	1 700	300	5,67	230	48	88	70	85,00	2,5	10	90	3,70	33,0	52	0,28
30	Tec-9	Pistol	500	300	1,67	240	500	33	275	90,15	1	18	90	2,50	23,0	24	2,00
31	UMP-45	SMG	1 200	600	2,00	230	666	35	389	65,00	1	25	100	3,50	23,0	11	1,00
32	USP-S	Pistol	200	300	0,67	240	352	35	206	50,50	1	12	24	2,20	29,0	22	2,50
33	XM1014	Heavy	2 000	900	2,22	215	171	120	342	80,00	1	7	32	2,80	80,0	3	38,00
34	MP5-SD	SMG	1 500	600	2,50	235	750	27	338	62,50	1	30	120	2,97	16,0	15	0,60
35	R8	Pistol	600	300	2,00	220	150	86	215	93,20	2	8	8	2,30	20,0	67	0,52

Рисунок 2 — Исходные данные для ввода в систему «Эйдос»

Затем с параметрами, показанными на рисунке 3, запустим режим 2.3.2.2 системы «Эйдос», представляющий собой автоматизированный программный интерфейс (API) с внешними данными табличного типа.

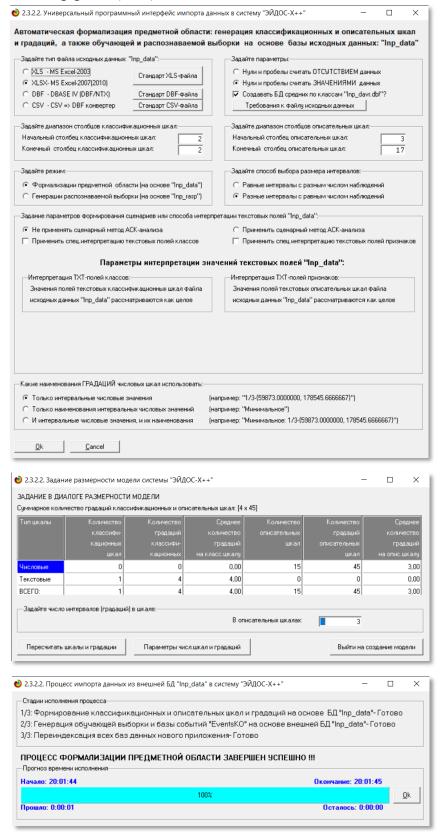


Рисунок 3. Экранные форма программного интерфейса (API) 2.3.2.2 системы «Эйдос» с внешними данными табличного типа

Обратим внимание на то, что заданы адаптивные интервалы, учитывающее неравномерность распределения данных по диапазону значений, что важно при относительно небольшом числе наблюдений. Если бы интервалы были заданы равными по величине, то в них бы учитывалось сильно отличающееся число наблюдений, а в некоторых интервалах их бы могло не оказаться вовсе. В описательных шкалах задано 3 числовых интервальных значения.

На рисунке 4 приведен Help данного режима, в котором объясняется принцип организации таблицы исходных данных для данного режима. Здесь же обратим внимание на то, что в таблице 3 значения параметров могут быть представлены как числовыми, так и текстовыми значениями.

Рисунок 4. Экранная форма HELP программного интерфейса (API) 2.3.2.2

В результате работы режима сформирована 1 классификационная шкала с суммарным количеством градаций (классов) 4 (таблица 3) и 15 описательных шкал с суммарным числом градаций 45 (таблица 4). С использованием классификационных и описательных шкал и градаций исходные данные (рисунок 2) были закодированы и в результате получена обучающая выборка (таблица 5):

Таблица 3 – Классификационные шкалы и градации (класс оружия)

(IWIAC	opjmin)
Код	Название
1	1/4-Heavy
2	2/4-Pistol
3	3/4-Rifle
4	4/4-SMG

Таблица 4 – Описательные шкалы и градации (характеристики оружия)

	(napantepherinai epjman)
Код	Название
1	1/3-{200.0000000, 1050.0000000}
2	2/3-{1050.0000000, 1800.0000000}
3	3/3-{1800.0000000, 5200.0000000}
4	1/3-{100.0000000, 300.0000000}
5	2/3-{300.0000000, 300.0000000}
6	3/3-{300.0000000, 900.0000000}
7	1/3-{0.6666667, 1.7500000}
8	2/3-{1.7500000, 5.6666667}
9	3/3-{5.6666667, 47.5000000}
10	1/3-{150.0000000, 220.0000000}
11	2/3-{220.0000000, 230.0000000}
12	3/3-{230.0000000, 240.0000000}
13	1/3-{41.0000000, 352.0000000}
14	2/3-{352.0000000, 352.0000000}
15	2/3-{332.00000000, 808.00000000} 3/3-{666.00000000, 857.0000000}
	, ,
16	1/3-{26.0000000, 30.0000000}
17	2/3-{30.0000000, 36.0000000}
18	3/3-{36.0000000, 256.0000000}
19	1/3-{70.0000000, 284.0000000}
20	2/3-{284.0000000, 333.0000000}
21	3/3-{333.0000000, 467.0000000}
22	1/3-{47.0000000, 64.0000000}
23	2/3-{64.0000000, 77.6500000}
24	3/3-{77.6500000, 100.0000000}
25	1/3-{0.0000000, 1.0000000}
26	2/3-{1.0000000, 2.0000000}
27	3/3-{2.0000000, 2.5000000}
28	1/3-{5.0000000, 13.0000000}
29	2/3-{13.0000000, 30.0000000}
30	3/3-{30.0000000, 150.0000000}
31	1/3-{8.0000000, 52.0000000}
32	2/3-{52.0000000, 90.0000000}
33	3/3-{90.0000000, 300.0000000}
34	1/3-{2.1000000, 2.5000000}
35	2/3-{2.5000000, 3.1000000}
36	3/3-{3.1000000, 5.7000000}
37	1/3-{16.0000000, 21.0000000}
38	2/3-{21.0000000, 28.0000000}
39	3/3-{28.0000000, 165.0000000}
40	1/3-{2.0000000, 15.0000000}
41	2/3-{15.0000000, 24.0000000}
42	3/3-{24.0000000, 24.0000000}
43	1/3-{0.2000000, 76.0000000}
43	2/3-{0.6000000, 0.00000000}
45	3/3-{2.0000000, 2.0000000}
43	3/3-{2.0000000, 02.0000000}

Таблица 5 – Обучающая выборка

					7	_		,	- 1		I					
NAME_OBJ	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	N13	N14	N15	N16	N17
AK-47	3	3	4	9	10	14	17	21	23	26	29	32	34	39	41	43
AUG	3	3	4	9	10	14	16	20	24	26	29	32	36	38	42	43
AWP	3	3	4	9	10	13	18	19	24	27	28	31	36	39	42	43
CZ75 Auto	2	1	4	8	12	14	17	20	23	25	28	31	35	39	40	45
Desert Eagle	2	1	4	8	11	13	18	20	24	26	28	31	34	39	42	44
Dual Berettas	2	1	4	7	12	14	18	20	22	25	29	33	36	38	41	44
FAMAS	3	3	4	9	10	14	16	20	23	26	29	32	36	37	41	43
Five-SeveN	2	1	4	7	12	14	17	19	24	25	29	33	34	38	40	44
G3SG1	3	3	4	9	10	13	18	20	24	27	29	32	36	39	42	43
Galil AR	3	2	4	9	10	14	16	20	23	26	30	32	35	37	41	43
Glock 18	2	1	4	7	12	14	16	19	22	25	29	33	34	37	41	44
M249	1	3	4	9	10	15	17	21	24	26	30	33	36	38	41	44
M4A1	3	3	4	9	11	14	17	21	23	26	29	32	35	38	42	43
M4A1-S	3	3	4	9	11	14	17	20	23	26	29	32	35	38	42	43
MAC-10	4	1	6	7	12	15	16	21	22	25	29	33	35	37	40	43
MAG-7	1	2	6	7	11	13	18	19	23	25	28	31	34	39	40	45
MP7	4	2	6	8	10	15	16	21	22	25	29	33	35	37	40	43
MP9	4	2	6	8	12	15	16	21	22	25	29	33	34	37	41	43
Negev	1	2	4	8	10	15	17	21	23	26	30	33	36	37	40	44
Nova	1	1	6	7	10	13	18	19	22	25	28	31	36	39	40	45

P2000	2	1	4	7	12	13	17	19	22	25	28	31	34	38	41	44
P250	2	1	4	7	12	14	18	19	22	25	28	31	34	38	40	44
P90	4	3	4	9	11	15	16	21	23	25	30	33	36	37	40	44
Bizon	4	2	6	8	12	15	16	21	22	25	30	33	34	37	40	44
Sawed-Off	1	2	6	7	10	13	18	20	23	25	28	31	36	39	40	45
SCAR-20	3	3	4	9	10	13	18	20	24	27	29	32	35	39	42	43
SG 553	3	3	4	9	10	14	16	20	24	26	29	32	35	38	42	43
SSG 08	3	2	4	8	11	13	18	19	24	27	28	32	36	39	42	43
Tec-9	2	1	4	7	12	14	17	19	24	25	29	32	34	38	41	44
UMP-45	4	2	6	8	11	14	17	21	23	25	29	33	36	38	40	44
USP-S	2	1	4	7	12	13	17	19	22	25	28	31	34	39	41	45
XM1014	1	3	6	8	10	13	18	21	24	25	28	31	35	39	40	45
MP5-SD	4	2	6	8	12	15	16	21	22	25	29	33	35	37	40	43
R8	2	1	4	8	10	13	18	19	24	26	28	31	34	37	42	43

Обучающая выборка (таблица 5), по сути, представляет собой нормализованные исходные данные, т.е. таблицу исходных данных (рисунок 2), закодированную с помощью классификационных и описательных шкал и градаций (таблицы 3 и 4). Таким образом, созданы все необходимые и достаточные условия для выполнения следующего этапа АСК-анализа: т.е. для синтеза и верификации моделей.

<u>Задача 3</u>: синтез и верификация статистических и системно-когнитивных моделей и выбор наиболее достоверной из них для решения задач

Синтез и верификация статистических и системно-когнитивных моделей (СК-моделей) моделей осуществляется в режиме 3.5 системы «Эйдос» (рисунок 5).

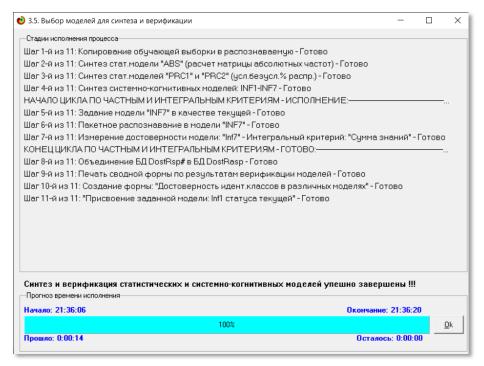


Рисунок 5. Экранные формы режима синтеза и верификации статистических и системно-когнитивных моделей системы «Эйдос»

Обратим внимание на то, что на рисунке 5 в правом нижнем углу окна задана опция: «Расчеты проводить на графическом процессоре (GPU)».

Из рисунка 5 видно, что весь процесс синтеза и верификации моделей занял 14 секунд. Отметим, что при синтезе и верификации моделей использовался графический процессор (GPU) видеокарты. На центральном процессоре (CPU) выполнение этих операций занимает значительно большее время (на некоторых задачах это происходит в десятки, сотни и даже тысячи раз дольше). Таким образом, неграфические вычисления на графических процессорах видеокарты делает возможной обработку больших объемов исходных данных за разумное время. В процесс синтеза и верификации моделей осуществляется также расчет 10 выходных форм, на что уходит более 99% времени исполнения.

Фрагменты самих созданных статистических и системно-когнитивных моделей (СК-модели) приведены на рисунках 6, 7:

од	Наименование описательной	1.	2.	3.	4.	Сумма	Среднее	Средн.
		HEAVY	PISTOL	RIFLE	1			
1	COST (\$)-1/3-{200.0000000, 1050.0000000}	1	10		1	12	3.00	4.
2	COST (\$)-2/3-{1050.0000000, 1800.0000000}	3		2	5	10	2.50	2.
3	COST (\$)-3/3-{1800.0000000, 5200.0000000}	2		9	1	12	3.00	4.
4	KILL AWARD (\$)-1/3-{100.0000000, 300.0000000}	2	10	11	1	24	6.00	5.
5	KILL AWARD (\$)-2/3-{300.0000000, 300.0000000}							
6	KILL AWARD (\$)-3/3-{300.0000000, 900.0000000}	4			6	10	2.50	3.
7	KILLS TO REBUY-1/3-(0.6666667, 1.7500000)	3	7		1	11	2.75	3.
8	KILLS TO REBUY-2/3-{1.7500000, 5.6666667}	2	3	1	5	11	2.75	1.
9	KILLS TO REBUY-3/3-{5.6666667, 47.5000000}	1		10	1	12	3.00	4.
10	MAX SPEED-1/3-{150.0000000, 220.0000000}	5	1	8	1	15	3.75	3.
11	MAX SPEED-2/3-{220.0000000, 230.0000000}	1	1	3	2	7	1.75	0.
12	MAX SPEED-3/3-{230.0000000, 240.0000000}		8		4	12	3.00	3.
13	RATE OF FIRE-1/3-{41.0000000, 352.0000000}	4	4	4		12	3.00	2.
14	RATE OF FIRE-2/3-{352.0000000, 666.0000000}		6	7	1	14	3.50	3.
15	RATE OF FIRE-3/3-{666.0000000, 857.0000000}	2			6	8	2.00	2.
16	DAMAGE-1/3-{26.0000000, 30.0000000}		1	4	6	11	2.75	2.
17	DAMAGE-2/3-(30.0000000, 36.0000000)	2	5	3	1	11	2.75	1.
18	DAMAGE-3/3-{36.0000000, 256.0000000}	4	4	4		12	3.00	2.
19	DPS-1/3-{70.0000000, 284.0000000}	2	7	2		11	2.75	2.
20	DPS-2/3-{284.0000000, 333.0000000}	1	3	7		11	2.75	3.
21	DPS-3/3-{333.0000000, 467.0000000}	3		2	7	12	3.00	2.
22	ARMOR PENETRATION (%)-1/3-{47.0000000, 64.0000000}	1	5		5	11	2.75	2.
23	ARMOR PENETRATION (%)-2/3-{64.0000000, 77.6500000}	3	1	5	2	11	2.75	1.

Рисунок 6. Матрица абсолютных частот (фрагмент)

од ризнака	Наименование описательной шкалы и градации			3. CATEGORY		Сумма	Среднее	Средн. квадр.
			2/4 PISTOL	3/4 RIFLE				
1	COST (\$)-1/3-(200.0000000, 1050.0000000)	-1.118	6.471	-3.882	-1.471	0.000		4.485
2	COST (\$)-2/3-{1050.0000000, 1800.0000000}	1.235	-2.941	-1.235	2.941			2.605
3	COST (\$)-3/3-{1800.0000000, 5200.0000000}	-0.118	-3.529	5.118	-1.471	0.000		3.689
4	KILL AWARD (\$)-1/3-{100.0000000, 300.0000000}	-2.235	2.941	3.235	-3.941			3.635
5	KILL AWARD (\$)-2/3-(300.0000000, 300.0000000)							
6	KILL AWARD (\$)-3/3-{300.0000000, 900.0000000}	2.235	-2.941	-3.235	3.941			3.635
7	KILLS TO REBUY-1/3-(0.6666667, 1.7500000)	1.059	3.765	-3.559	-1.265			3.139
8	KILLS TO REBUY-2/3-{1.7500000, 5.6666667}	0.059	-0.235	-2.559	2.735			2.167
9	KILLS TO REBUY-3/3-{5.6666667, 47.5000000}	-1.118	-3.529	6.118	-1.471	0.000		4.215
10	MAX SPEED-1/3-(150.0000000, 220.0000000)	2.353	-3.412	3.147	-2.088			3.237
11	MAX SPEED-2/3-{220.0000000, 230.0000000}	-0.235	-1.059	0.735	0.559			0.822
12	MAX SPEED-3/3-(230.0000000, 240.0000000)	-2.118	4.471	-3.882	1.529			3.736
13	RATE OF FIRE-1/3-{41.0000000, 352.0000000)	1.882	0.471	0.118	-2.471			1.815
14	RATE OF FIRE-2/3-(352.0000000, 666.0000000)	-2.471	1.882	2.471	-1.882			2.536
15	RATE OF FIRE-3/3-{666.0000000, 857.0000000}	0.588	-2.353	-2.588	4.353	0.000		3.242
16	DAMAGE-1/3-{26.0000000, 30.0000000}	-1.941	-2.235	0.441	3.735	0.000		2.764
17	DAMAGE-2/3-{30.0000000, 36.0000000)	0.059	1.765	-0.559	-1.265			1.299
18	DAMAGE-3/3-{36.0000000, 256.0000000}	1.882	0.471	0.118	-2.471			1.819
19	DPS-1/3-{70.0000000, 284.0000000}	0.059	3.765	-1.559	-2.265			2.692
20	DPS-2/3-{284.0000000, 333.0000000}	-0.941	-0.235	3.441	-2.265			2.443
21	DPS-3/3-(333.0000000, 467.0000000)	0.882	-3.529	-1.882	4.529			3.526
22	ARMOR PENETRATION (%)-1/3-{47.0000000, 64.0000000}	-0.941	1.765	-3.559	2.735			2.837
23	ARMOR PENETRATION (%)-2/3-(64.0000000, 77.6500000)	1.059	-2.235	1.441	-0.265			1.660

Рисунок 7. Модель INF3 (фрагмент)

Отметим, что в АСК-анализе и СК-моделях степень выраженности различных свойств объектов наблюдения рассматривается с единственной точки зрения: с точки зрения того, какое количество информации содержится в них о том, к каким обобщающим категориям (классам) будут принадлежать или не принадлежать эти объекты. Поэтому не играет никакой роли, в каких единицах измерения измеряются те или иные свойства объектов наблюдения, а также в каких единицах измеряются результаты влияния этих свойств, натуральных, в процентах или стоимостных. Это и есть решение проблемы сопоставимости в АСК-анализе и системе «Эйдос», отличающее их от других интеллектуальных технологий.

Верификация статистических и системно-когнитивных моделей

Оценка достоверности моделей в системе «Эйдос» осуществляется путем решения задачи классификации объектов обучающей выборки по обобщенным образам классов и подсчета количества истинных

положительных и отрицательных, а также ложных положительных и отрицательных решений по F-мере Ван Ризбергена, а также по критериям L1-L2-мерам проф. Е.В.Луценко, которые предложены для того, чтобы смягчить или полностью преодолеть некоторые недостатки F-меры. В режиме 3.4 системы «Эйдос» изучается достоверность каждой частной модели в соответствии с этими мерами достоверности (рисунок 8).

(авиленование модели настного критерия		F-мера Ван Ризбергена	Сумма модул уровней сход истино-поло	Сумма модул уровней сход истино-отриц	Сумма модул уровней сход ложно-полож	Сумма модул уровней сход ложно-отрицат.	S-Точность модели		L1-мера проф. Е.В.Луценко	Средний модуль уровней сходс истино-полож	Средний модуль уровней сходс истино-отрицат.	Средн уровно ложно
			решений (STP)	решений (STN)	решеный (SFP)	решений (SFN)				решений	решений	решен
.ABS - частный критерий: количество встреч сочетаний: "клас	Корреляция абс.частот с обр	0.739	23.684	16.410	3.737		0.864	1.000	0.927	0.697	0.210	
. ABS · частный критерий: количество встреч сочетаний: "клас	Сумма абс.частот по признак	0.400	24.348		31.113		0.439	1.000	0.610	0.716		
PRC1 - частный критерий: усл. вероятность i-го признака сред	Корреляция усл.отн.частот с о	0.739	23.684	16.410	3.737		0.864	1.000	0.927	0.697	0.210	
. PRC1 - частный критерий: усл. вероятность іго признака сред	Сумма усл.отн.частот по приз	0.400	26.497		37.048		0.417	1.000	0.589	0.779		
PRC2 · частный критерий: условная вероятность і-го признака	Корреляция усл.отн.частот с о	0.747	23.684	16.410	3.737		0.864	1.000	0.927	0.697	0.208	
PRC2 · частный критерий: условная вероятность і-го признака	Сумма усл.отн.частот по приз	0.400	26.497		37.048		0.417	1.000	0.589	0.779		
.INF1 - частный критерий: количество знаний по А.Харкевичу; в	Семантический резонанс зна	0.767	20.317	26.814	2.464	0.152	0.892	0.993	0.940	0.616	0.323	
INF1 - частный критерий: количество знаний по А.Харкевичу; в	Сумма знаний	0.695	18.184	18.588	3.476	0.010	0.840	0.999	0.913	0.551	0.251	
INF2 - частный критерий: количество знаний по А.Харкевичу; в	Семантический резонанс зна	0.767	20.317	26.814	2.464	0.152	0.892	0.993	0.940	0.616	0.323	
INF2 - частный критерий: количество знаний по А.Харкевичу; в	Сумма знаний	0.695	18.184	18.588	3.476	0.010	0.840	0.999	0.913	0.551	0.251	
INF3 - частный критерий: Хи-квадрат, разности между фактич	Семантический резонанс зна	0.800	23.181	26.433	2.235		0.912	1.000	0.954	0.682	0.311	
INF3 - частный критерий: Хи-квадрат, разности между фактич	Сумма знаний	0.810	21.462	23.256	1.795		0.923	1.000	0.960	0.631	0.270	
. INF4 - частный критерий: ROI (Return On Investment); вероятно	Семантический резонанс зна	0.795	20.796	25.370	1.919	0.150	0.916	0.993	0.953	0.630	0.295	
. INF4 - частный критерий: ROI (Return On Investment); вероятно	Сумма знаний	0.535	18.914	3.821	7.589		0.714	1.000	0.833	0.556	0.089	
INF5 - частный критерий: ROI (Return On Investment); вероятно	Семантический резонанс зна	0.795	20.796	25.370	1.919	0.150	0.916	0.993	0.953	0.630	0.295	
INF5 - частный критерий: ROI (Return On Investment); вероятно	Сумма знаний	0.535	18.914	3.821	7.589		0.714	1.000	0.833	0.556	0.089	
INF6 - частный критерий: разн.усл.и безусл.вероятностей; вер	Семантический резонанс зна	0.795	21.811	23.774	2.163	0.201	0.910	0.991	0.949	0.661	0.276	
INF6 - частный критерий: разн.усл.и безусл.вероятностей; вер	Сумма знаний	0.544	19.486	4.373	7.424		0.724	1.000	0.840	0.573	0.097	
0.INF7 - частный критерий: разн.усл.и безусл.вероятностей; ве	Семантический резонанс зна	0.795	21.811	23.774	2.163	0.201	0.910	0.991	0.949	0.661	0.276	
0.INF7 - частный критерий: разн.усл.и безусл.вероятностей; ве	Сумма знаний	0.544	19.486	4.373	7.424		0.724	1.000	0.840	0.573	0.097	
		4										

Рисунок 8. Экранная форма с информацией о достоверности моделей по F-критерию Ван Ризбергена и L1-критерию проф. Е.В.Луценко

Из рисунка 8 мы видим, что в данном интеллектуальном приложении по F-критерию Ван Ризбергена наиболее достоверной является СК-модель INF3 с интегральным критерием «Сумма знаний» (F=0,810 при максимуме 1,000), что является довольно хорошим результатом, по критерию L1 проф. Е.В.Луценко та же модель является наиболее достоверной (L1=0,960 при максимуме 1,000), что является отличным результатом.

Это подтверждает наличие и адекватное отражение в СК-модели INF3 сильной причинно-следственной зависимости между видом оружия и его характеристиками.

На рисунке 9 приведено частотное распределения числа истинных и ложных положительных и отрицательных решений по результатам идентификации характеристик оружия в СК-модели INF3 по данным обучающей выборки:

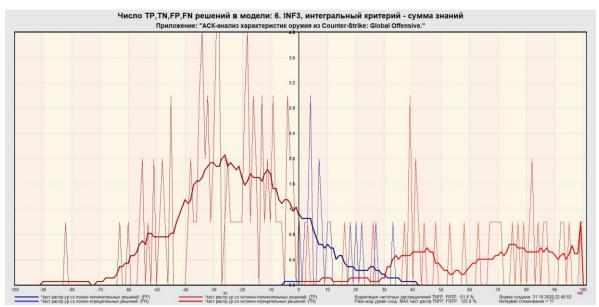


Рисунок 9. Частотные распределения числа истинных и ложных положительных и отрицательных решений и их разности в СК-модели Inf3

Рисунок 9 содержит изображения двух частотных распределений, похожих на нормальные, сдвинутых относительно друг друга по фазе.

Левое распределение, большее по амплитуде включает истинноотрицательные и ложно-положительные решения, а правое, меньшее по амплитуде, включает ложные отрицательные и истинно-положительные решения.

Сдвиг этих распределений относительно друг друга и другие различия между ними и позволяют решать задачу идентификации вида оружия по его характеристикам и другие задачи.

Видно, что для отрицательных решений количество истинных решений всегда значительно превосходит количество ложных решений, причем при уровнях различия больше примерно 5% ложные отрицательные решения вообще практически отсутствуют.

Видно также, что для положительных решений картина более сложная и включает 3 диапазона уровней сходства

- 1) при уровнях сходства от 0% до 30% количество ложных решений больше числа истинных;
- 2) при уровнях сходства от 30% до примерно 42% есть и истинные и ложные положительные решения, но число истинных решений больше числа ложных и доля истинных решений возрастает при увеличении уровня сходства;
- 3) при уровнях сходства выше 42% ложные положительные решения не встречаются.

На рисунке 10 приведен Help по режиму 3.4, в котором описаны меры достоверности моделей, применяемые в системе «Эйдос»:

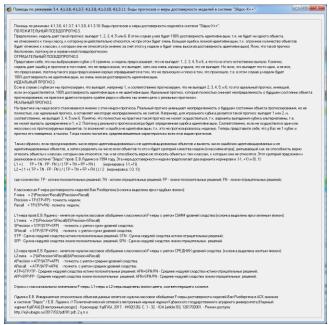
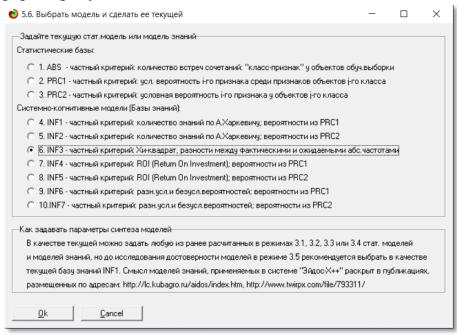



Рисунок 10. Экранная форма с информацией о достоверности моделей по F-критерию Ван Ризбергена и L1- и L2-критериям проф. Е.В.Луценко

Выбор наиболее достоверной модели и присвоение ей статуса текущей

В соответствии со схемой обработки данных, информации и знаний в системе «Эйдос» (рисунок 1), присвоим СК-модели INF3 статус текущей модели. Для этого запустим режим 5.6 с параметрами, приведенными на экранной форме (рисунок 11):

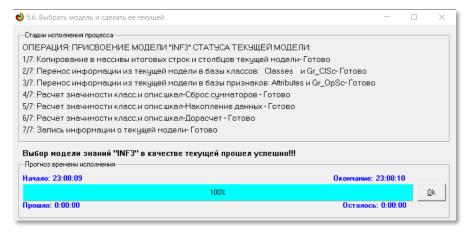


Рисунок 11. Экранные формы придания наиболее достоверной СК-модели Inf3 статуса текущей модели

<u>Задача 4</u>: решение различных задач в наиболее достоверной модели

Подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, идентификация)

Решим задачу системной идентификации, т.е. определение класса оружия на основе обучающей выборки в наиболее достоверной СК-модели INF3 на GPU (рисунок 12).

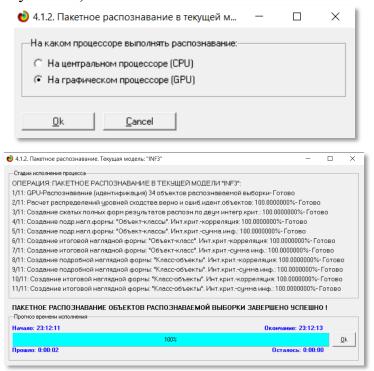


Рисунок 12. Экранные формы, которые отображают процесс решения задачи системной идентификации в текущей модели

Из рисунка 12 видно, что процесс идентификации занял 2 секунды.

Отметим, что 99% этого времени заняла не сама идентификация на GPU, а создание 10 выходных форм на основе результатов этого прогнозирования. Эти формы отражают результаты прогнозирования в различных разрезах и обобщениях:

Интегральный критерий сходства: "Семантический рез 1 AK-47 CATEGORY-3/4-Rifle 60,69.. CATEGORY-2/4-Pistol 2 AUG -24,99. CATEGORY-4/4-SMG -32,13. 3 AWP 4 CZ75 Auto CATEGORY-1/4-Heavy -32,47 5 Desert Eagle 6 Dual Beretta: 7 FAMAS 8 Five-Sevel 10 Galil AR 11 Glock 18 12 M249 13 M4A1 CATEGORY-3/4-Rifle 68.84... CATEGORY-1/4-Heav 14 M4A1-S -18.12. 15 MAC-10 CATEGORY-2/4-Pistol -23 NB 16 MAG-7 CATEGORY-474-SMG -27.65 17 MP7 18 MP9 19 Negev 20 Nova 21 P2000 Помощь 9 классов Классы с МахМіл УРСх 9 классов с МахМіл УРСх ВСЕ классы ВКЛ. фильтр по класс. шкале ВЫКЛ, фильтр по класс. шкале Граф диагранны

Приведем две из этих 10 форм: 4.1.3.1 и 4.1.3.2 (рисунок 13).

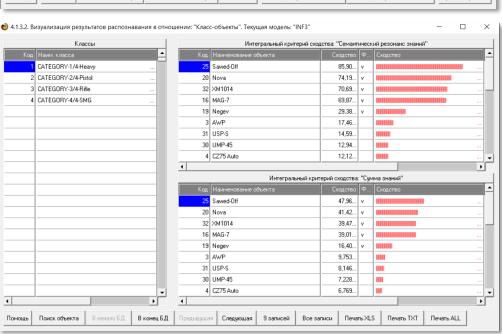


Рисунок 13. Выходные формы по результатам идентификации вида оружия по его характеристикам

Символ « $\sqrt{}$ » стоит против тех результатов идентификации, которые подтвердились на опыте, т.е. соответствуют факту. Из рисунка 13 видно, что результаты идентификации являются отличными, естественно при учете информации из рисунка 9 о том, что достоверные прогнозы в данной модели имеют уровень сходства выше 42%, т.е., по сути, результаты с более низки уровнем сходства надо просто игнорировать.

Подзадача 4.2. Поддержка принятия решений (SWOT-анализ)

При принятии решений определяется сила и направление влияния значений факторов на принадлежность состояний объекта моделирования к тем или иным классам, соответствующим различным будущим состояниям. По сути, это решение задачи SWOT-анализа.

Применительно к задаче, решаемой в данной работе, SWOT-анализ показывает степень влияния различных значений характеристик оружия на его вид.

В системе «Эйдос» в режиме 4.4.8 поддерживается решение этой задачи. При этом выявляется система детерминации заданного класса, т.е. система значений факторов, обуславливающих переход объекта моделирования и управления в состояние, соответствующее данному классу, а также препятствующих этому переходу.

На рисунках 14 приведены SWOT-диаграммы наглядно отражающие силу и направление влияния различных значений характеристик оружия на его вид.

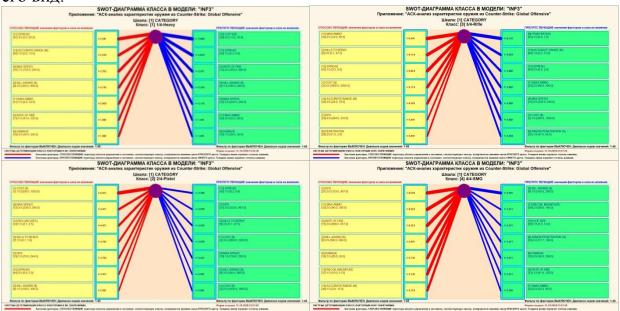


Рисунок 14. SWOT-диаграммы детерминации характеристик оружия

Эти SWOT-диаграммы наглядно отражают силу и направление влияния различных значений характеристик оружия на его вид.

Отметим также, что система «Эйдос» обеспечивала решение этой задачи *всегда*, т.е. даже в самых ранних DOS-версиях и в реализациях системы «Эйдос» на других языках и типах компьютеров. Например, первый акт внедрения системы «Эйдос», где об этом упоминается в явном виде, датируется 1987 годом, а первый подобный расчет относится к 1981 году.

Но тогда SWOT-диаграммы назывались позитивным и негативным информационными портретами классов.

Информация о системе значений факторов, обуславливающих переход объекта моделирования в различные будущие состояния, соответствующие классам, может быть приведена не только в диаграммах, показанных на рисунках 14, но и во многих других табличных и графических формах, которые в данной работе не приводятся только из-за ограниченности ее объема. В частности в этих формах может быть выведена значительно более полная информация (в т. ч. вообще вся имеющая в модели). Подобная подробная информация содержится в базах данных, расположенных по пути: \Aidos-X\AID_DATA\A0000001\System\SWOTCls###Inf3.DBF, где: «####» – код класса с ведущими нулями. Эти базы открываются в MS Excel.

На рисунке 15 приведены примеры нескольких инвертированных SWOT-диаграмм, отражающих силу и направление влияния различных видов оружия на его характеристики.

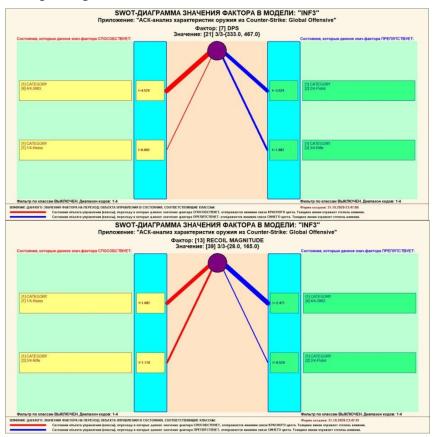


Рисунок 15. Примеры SWOT-диаграмм, отражающих силу и направление влияния различных видов оружия на его характеристики

Из первого примера видно, что наибольший урон в секунду более характерен SMG и Heavy.

В заключение отметим, что SWOT-анализ является широко известным и общепризнанным метод стратегического планирования. Однако это не мешает тому, что он подвергается критике, часто вполне справедливой, обоснованной и хорошо аргументированной. В результате критического рассмотрения SWOT-анализа выявлено довольно много его слабых сторон (недостатков), источником которых чаще всего является необходимость привлечения экспертов, в частности для оценки силы и направления влияния факторов. Ясно, что эксперты это делают неформализуемым путем (интуитивно), на основе своего опыта и профессиональной компетенции. Но возможности экспертов имеют свои ограничения и часто по различным причинам они не могут и не хотят это сделать. Таким образом, возникает проблема проведения SWOT-анализа без привлечения экспертов. Эта проблема может решаться путем автоматизации функций экспертов, т.е. путем измерения силы и направления влияния факторов непосредственно на основе эмпирических данных. Подобная технология разработана давно, ей уже более 30 лет, но, к сожалению, она сравнительно малоизвестна – это интеллектуальная система «Эйдос».

Подзадача 4.3. Исследование моделируемой предметной области путем исследования ее модели

Если модель предметной области достоверна, то исследование модели можно считать исследованием самого моделируемого объекта, т.е. результаты исследования модели корректно относить к самому объекту моделирования, «переносить на него».

В системе «Эйдос» есть довольно много возможностей для такого исследования, но в данной работе из-за ограничений на ее объем мы рассмотрим лишь результаты кластерно-конструктивного анализа классов и признаков (когнитивные диаграммы и дендрограммы), а также нелокальные нейроны, нелокальные нейронные сети, 3d-интегральные когнитивные карты и когнитивные функции.

4.3.1. Когнитивные диаграммы классов

Эти диаграммы отражают сходство/различие классов. Мы получаем их в режимах 4.2.2.1 и 4.2.2.2 (рисунок 16).

Отметим также, что на когнитивной диаграмме, приведенной на рисунке 16, показаны количественные оценки сходства/различия видов оружия из Counter-Strike: Global Offensive по связанным с ними значениям их характеристик. Важно, что эти результаты сравнения получены с применением системно-когнитивной модели, созданной непосредственно на основе эмпирических данных, а не как традиционно делается на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

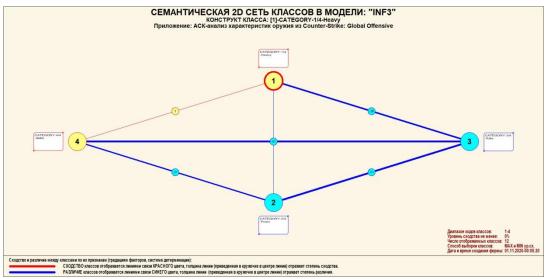


Рисунок 16. Когнитивная диаграмма классов, отражающая сходства/различия видов оружия по связанным с ними значениям их характеристик.

В системе «Эйдос» есть возможность управлять параметрами формирования и вывода изображения, приведенного на рисунке 16. Для этого используется диалоговое окно, приведенное на рисунке 17.

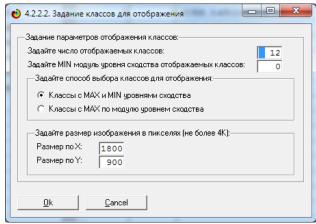


Рисунок 17. Диалоговое окно управления параметрами формирования и вывода изображения когнитивной диаграммы классов

4.3.2. **Агломеративная когнитивная кластеризация** классов

Информация о сходстве/различии классов, содержащаяся в матрице сходства, может быть визуализирована не только в форме, когнитивных диаграмм, пример которой приведен на рисунке 16, но и в форме агломеративных дендрограмм, полученных в результате когнитивной кластеризации (рисунок 18):

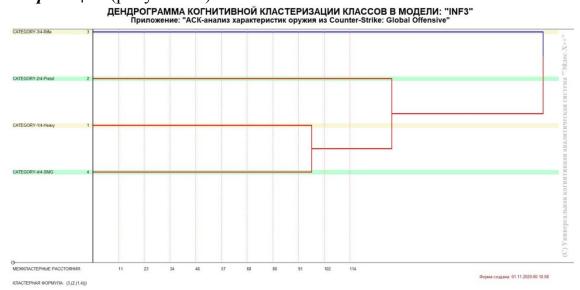


Рисунок 18. Дендрограмма когнитивной агломеративной кластеризации, отражающая сходство/различие видов оружия

Из рисунков 16 и 18 мы видим, что некоторые виды оружия сходны по детерминирующей их системе значений характеристик, и, следовательно, корректно ставить задачу их одновременного достижения, а другие по системе значений этих параметров сильно отличаются, и, следовательно, являются взаимоисключающими, т.е. альтернативными и цель их одновременного достижения является некорректной и недостижимой, т.к. для достижения одного из альтернативных результатов необходимы одни значения характеристик, а для достижения другого — совершенно другие, которые не могут наблюдаться одновременно с первыми.

Из дендрограммы когнитивной агломеративной кластеризации классов, приведенной на рисунке 18, мы видим также, что все классы образуют два противоположных кластера, являющихся полюсами конструкта, по системе значений обуславливающих значениям параметров их характеристик.

На рисунке 19 мы видим график изменения межкластерных расстояний:

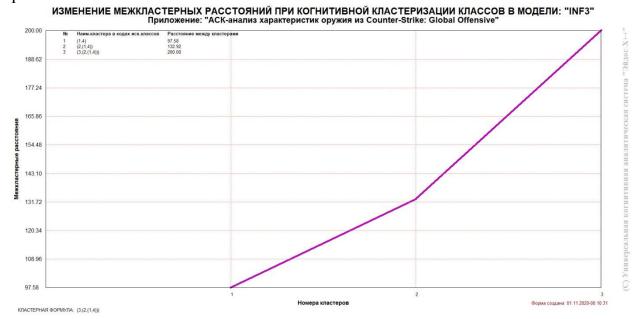


Рисунок 19. График изменения межкластерных расстояний

4.3.3. Когнитивные диаграммы значений факторов

Эти диаграммы отражают сходство/различие значений параметров характеристик по их смыслу, т.е. по содержащейся в них информации о виде оружия. Эти диаграммы мы получаем в режимах 4.3.2.1 и 4.3.2.2 (рисунок 20).

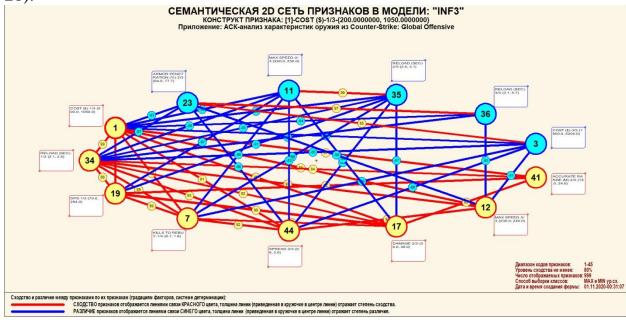


Рисунок 20. сходство/различие признаков оружия в соответствии с их характеристиками

Из рисунка 20 видно, что все значения факторов образуют два крупных кластера, противоположных по их смыслу. Эти кластеры образуют полюса конструкта.

Отметим, что на когнитивной диаграмме, приведенной на рисунке 20, показаны *количественные* оценки сходства/различия значений факторов, полученные с применением системно-когнитивной модели, созданной *непосредственно на основе эмпирических данных*, а не как традиционно делается на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

Диаграмма, приведенная на рисунке 20, получена при параметрах, приведенных на рисунке 21.

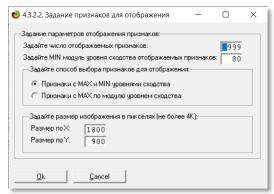


Рисунок 10. Параметры отображения когнитивной диаграммы, приведенной на рисунке 20

4.3.4. Агломеративная когнитивная кластеризация значений факторов

На рисунке 22 приведена агломеративная дендрограмма когнитивной кластеризации значений факторов и график изменения межкластерных расстояний, полученные на основе той же матрицы сходства признаков по их смыслу, что и в когнитивных диаграммах, пример которой приведен на рисунке 20.



Рисунок 11. Дендрограмма агломеративной когнитивной кластеризации признаков

Из дендрограммы на рисунке 22 мы видим, что все значения факторов образуют 2 четко выраженных кластера, объединенных в полюса конструкта (показаны синими и красным цветами).

Хорошо видна группировка признаков по их смыслу, т.е. по содержащейся в них информации о классе оружия. Значения факторов на полюсах конструкта факторов (рисунок 22) обуславливают переход объекта моделирования в состояния, соответствующие классам, представленным на полюсах конструкта классов (рисунки 18 и 20).

На рисунке 23 приведен график межкластерных расстояний значений признаков.

Рисунок 12. График изменения межкластерных расстояний при когнитивной кластеризации значений факторов

4.3.5. Нелокальные нейроны и нелокальные нейронные сети

На рисунке 24 приведён пример нелокального нейрона, а на рисунке 25 - фрагмент одного слоя нелокальной нейронной сети:



Рисунок 13. Пример нелокального нейрона, отражающего силу и направление влияния значений характеристик оружия на его вид

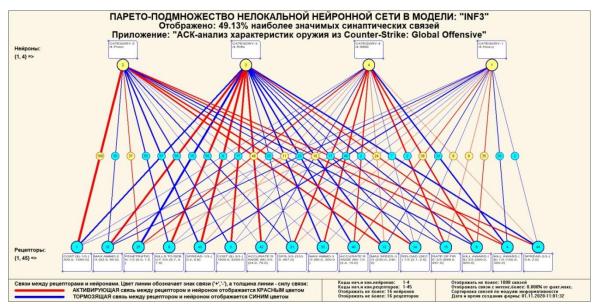


Рисунок 14. Один слой нелокальной нейронной сети, отражающий силу и направление влияния значений характеристик оружия на его вид (фрагмент 49% сети)

В приведенном фрагменте нейронной сети нейроны слоя соответствуют классу (виду) оружия, а рецепторы – их характеристикам. Нейроны расположены слева направо В порядке убывания силы детерминации, наиболее T.e. слева находятся результаты, жестко обусловленные обуславливающими их значениями факторами, а справа – менее жестко обусловленные.

Модель знаний системы «Эйдос» относится к *нечетким декларативным* гибридным моделям и объединяет в себе некоторые особенности нейросетевой и фреймовой моделей представления знаний. Классы в этой модели соответствуют нейронам и фреймам, а признаки рецепторам и шпациям (описательные шкалы – слотам).

От фреймовой модели представления знаний модель системы «Эйдос» отличается своей эффективной и простой программной реализацией, полученной за счет того, что разные фреймы отличаются друг от друга не набором слотов и шпаций, а лишь информацией в них. Поэтому в системе «Эйдос» при увеличении числа фреймов само количество баз данных не увеличивается, а увеличивается лишь их размерность.

От нейросетевой модели представления знаний модель системы «Эйдос» отличается тем, что:

- 1) весовые коэффициенты на рецепторах не подбираются итерационным методом обратного распространения ошибки, а считаются прямым счетом на основе хорошо теоретически обоснованной модели, основанной на теории информации (это напоминает байесовские сети);
- 2) весовые коэффициенты имеют хорошо теоретически обоснованную содержательную интерпретацию, основанную на теории информации;
- 3) нейросеть является нелокальной, как сейчас говорят «полносвязной».

4.3.6. 3d-интегральные когнитивные карты

На рисунке 26 приведен фрагмент 3d-интегральной когнитивной карты, отражающий фрагмент около 49% СК-модели Inf3.

3d-интегральная когнитивная карта является отображением на одном рисунке когнитивных диаграмм классов и значений факторов, отображенных соответственно на рисунках 16 и 20, и одного слоя нейронной сети, приведенного на рисунке 25.

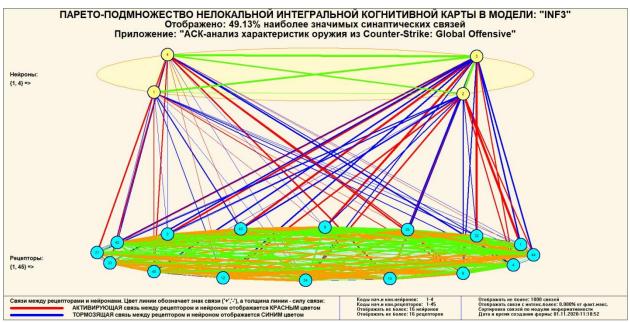


Рисунок 15. 3d-интегральная когнитивная карта в СК-модели Inf3

4.3.7. Когнитивные функции

Вместо описания того, что представляют собой когнитивные функции, приведем help соответствующего режима системы «Эйдос» (рисунок 27).

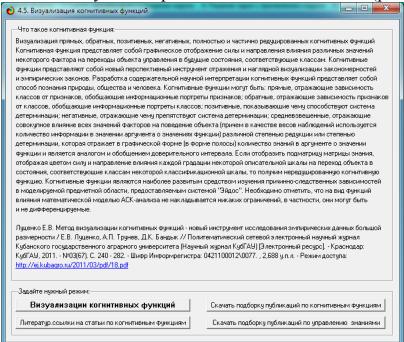
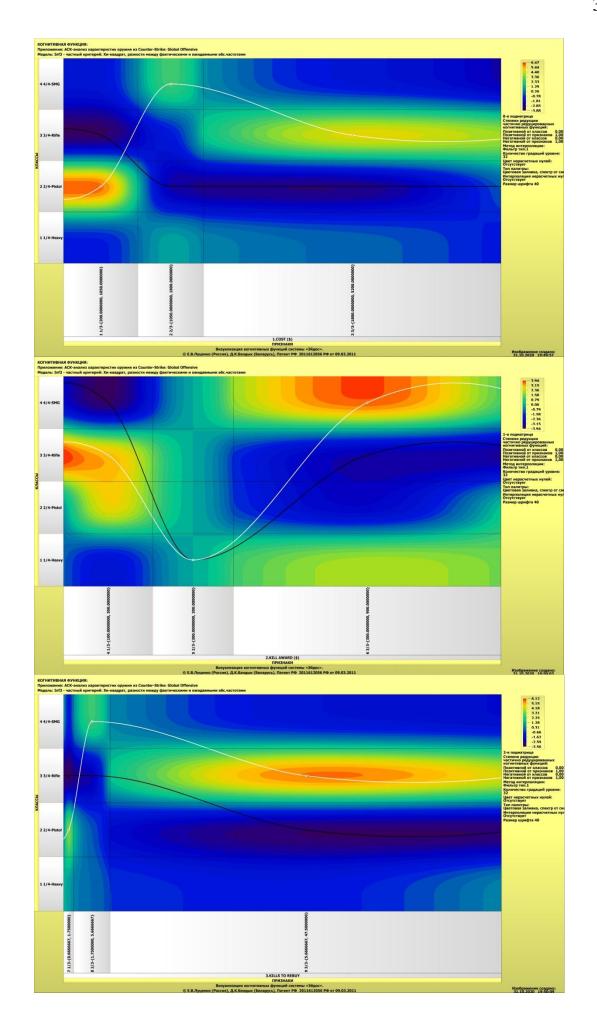
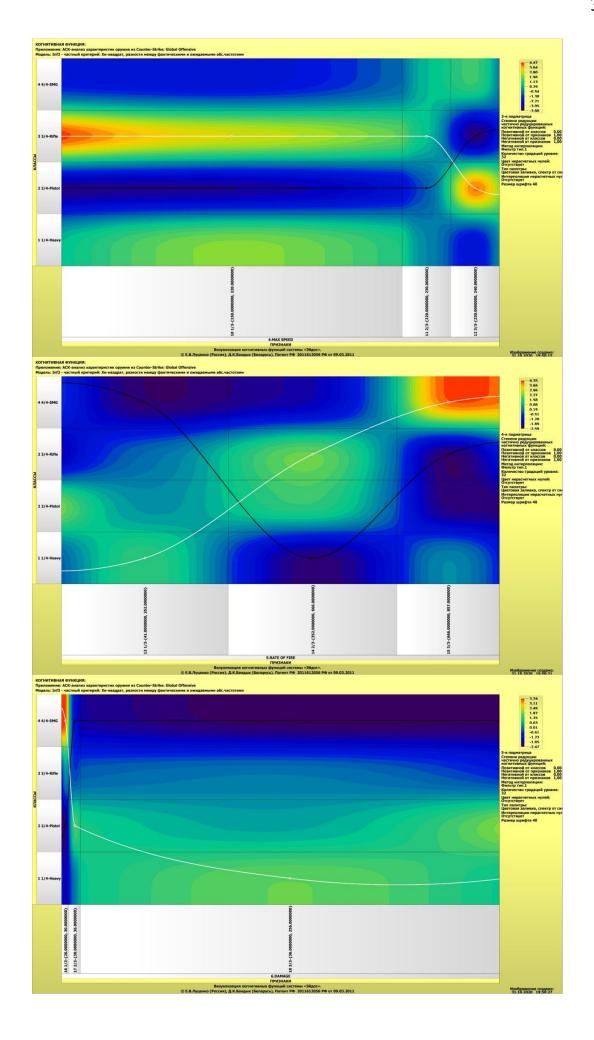


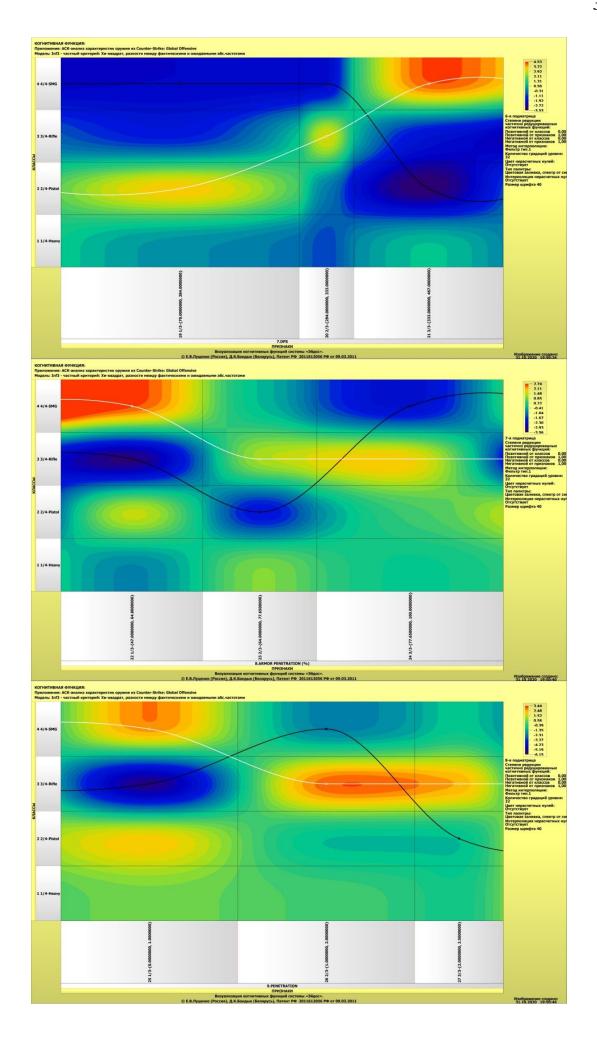
Рисунок 16. Help режима визуализации когнитивных функций

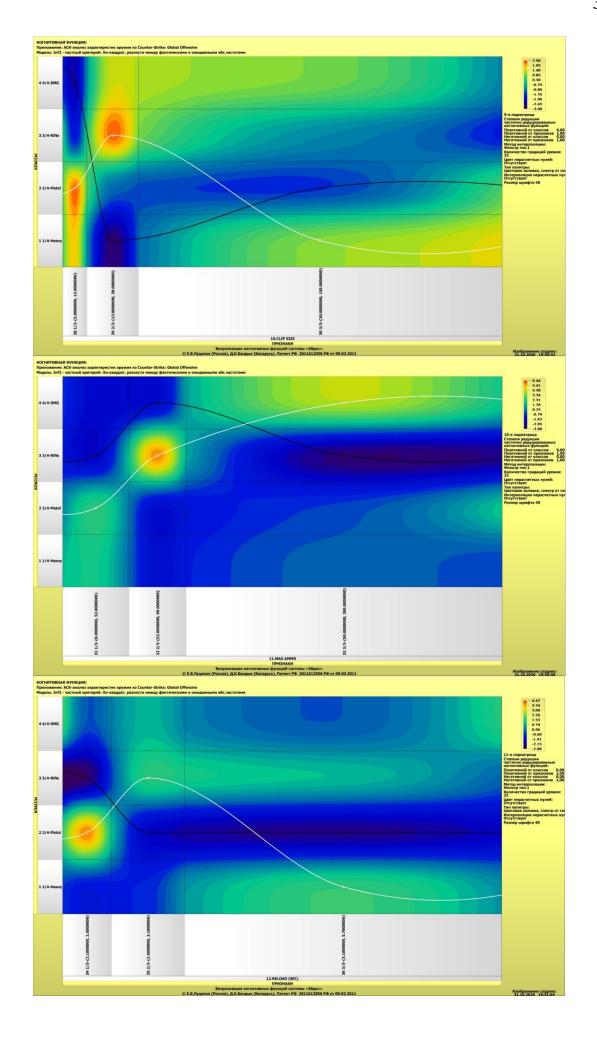
Когнитивная функция представляет собой графическое отображение силы и направления влияния различных значений некоторого фактора (признаков) на переходы объекта управления в будущие состояния, соответствующие классам. Классы являются градациями классификационных шкал.

Когнитивные функции представляют собой новый перспективный инструмент отражения и наглядной визуализации эмпирических закономерностей и эмпирических законов. Разработка содержательной научной интерпретации когнитивных функций представляет собой способ познания природы, общества и человека.


Когнитивные функции могут быть: прямые, отражающие зависимость классов от признаков, обобщающие информационные портреты признаков; обратные, отражающие зависимость признаков от классов, обобщающие информационные портреты классов; позитивные, показывающие чему способствуют система детерминации (обозначены белой линией); чему препятствуют система негативные, отражающие детерминации (обозначены черной линией); средневзвешенные, отражающие совокупное влияние всех значений факторов на поведение объекта (причем в качестве весов наблюдений используется количество информации в значении аргумента о значениях функции) различной степенью редукции или степенью детерминации, которая отражает в графической форме (в форме полосы разной толщины) количество знаний в аргументе о значении функции и является аналогом и обобщением доверительного интервала.


Если отобразить подматрицу матрицы знания, отображая цветом силу и направление влияния каждой градации некоторой описательной шкалы на переход объекта в состояния, соответствующие классам некоторой классификационной шкалы, то получим нередуцированную когнитивную функцию.


Когнитивные функции являются наиболее развитым средством изучения причинно-следственных зависимостей в моделируемой предметной области, предоставляемым системой "Эйдос".


Необходимо отметить, что *на вид функций влияния математической моделью АСК-анализа не накладывается никаких ограничений*, в частности, они могут быть и не дифференцируемые.

На рисунках 28 приведены когнитивные функции, наглядно отражающие силу и направление влияния значений (т.е. степени выраженности) различных характеристик оружия на его вид (класс).

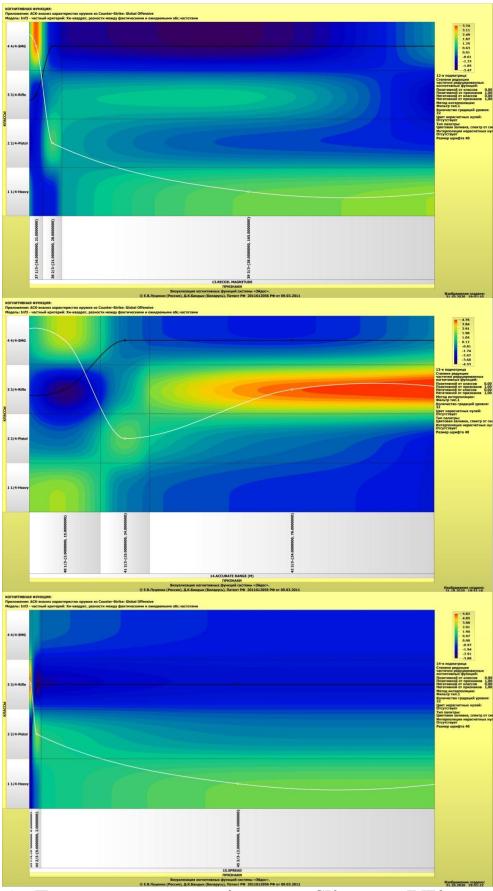


Рисунок 17. Примеры когнитивных функций в СК-модели INF3, отражающих силу и направление влияния значений характеристик оружия на его вид

Из когнитивных функций, приведенных на рисунке 28, хорошо видно, что зависимости между значениями характеристик оружия и его классом в основном имеют довольно предсказуемый характер.

4.3.8. Сила и направление влияния значений характеристик оружия и сила влияния этих характеристик на класс (вид) оружия

На рисунках 6, 7 приведены фрагменты некоторых статистических и системно-когнитивных моделей, отражающих моделируемую предметную область.

Строки матриц моделей соответствуют значениям факторов, т.е. значениям характеристик оружия (градации описательных шкал).

Колонки матриц моделей соответствуют различным классам, отражающим вид (класс) оружия (градации классификационных шкал).

Числовые значения в ячейках матриц моделей, находящихся на пересечении строк и колонок, отражают направление (знак) и силу влияния конкретного значения характеристики оружия, соответствующего сроке, на конкретное значение его класса (вида).

Если какое-то значение характеристики слабо влияет на класс оружия, то в соответствующей строке матрицы модели будут малые по модулю значения разных знаков, если же влияние сильное — то и значения будут большие по модулю разных знаков.

Если значение какой-либо характеристики способствует получению некоторого определенного класса оружия, то в соответствующей этому результату ячейке матрицы модели будут положительные значения, если же понижает – то и значения будут отрицательные.

Из этого следует, что суммарную силу влияния того или иного значения характеристики оружия на его класс (т.е. ценность данного значения характеристики для решения задачи квалиметрии и других задач) можно количественно оценивать *степенью вариабельности значений* в строке матрицы модели, соответствующей этому значению характеристики оружия.

Существует много мер вариабельности значений: это и среднее модулей отклонения от среднего, и дисперсия, и среднеквадратичное отклонение и другие. В АСК-анализе и системе «Эйдос» для этой цели принято использовать среднеквадратичное отклонение. Численно оно равно стандартному отклонению и вычисляется по той же формуле, но мы предпочитаем не использовать термин «стандартное отклонение», т.к. он нормальность распределения предполагает исследуемых последовательностей чисел, a проверку соответствующих значит И статистических гипотез.

Самая правая колонка в матрицах моделей на рисунках 6, 7 содержит количественную оценку вариабельности значений строки модели (среднеквадратичное отклонение), которая и представляет собой ценность

значения характеристики оружия, соответствующего строке, для решения задачи квалиметрии и других задач, рассмотренных в работе.

Если рассортировать матрицу модели по этой самой правой колонке в порядке убывания, а потом просуммировать значения в ней нарастающим итогом, то получим логистическую Парето-кривую, отражающую зависимость ценности модели от числа наиболее ценных признаков в ней (рисунок 29, таблица 6).

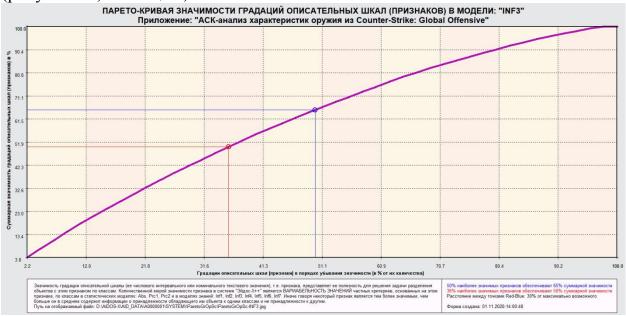


Рисунок 29. Парето-кривая значимости градаций описательных шкал

Таблица 6 – Парето-таблица значимости градаций описательных шкал, т.е. сила влияния значений характеристик оружия на его класс в СК-молели INF3

		в Ск-модели пугэ			
					Значи-
					мость
				Значи-	нараст.
$N_{\underline{0}}$	Код	Наименование	Код шкалы	мость, %	итогом, %
1	1	COST (\$)-1/3-{200.0000000, 1050.00000000}	1	4,48527	3,7525642
2	43	SPREAD-1/3-{0.2000000, 0.6000000}	15	4,3250297	7,3710646
3	32	MAX AMMO-2/3-{52.0000000, 90.0000000}	11	4,2966014	10,9657807
4	25	PENETRATION-1/3-{0.0000000, 1.00000000}	9	4,2252742	14,5008215
5	9	KILLS TO REBUY-3/3-{5.6666667, 47.5000000}	3	4,2148199	18,0271159
6	12	MAX SPEED-3/3-{230.0000000, 240.0000000}	4	3,7364133	21,1531552
7	3	COST (\$)-3/3-{1800.0000000, 5200.0000000}	1	3,6888811	24,2394272
8	4	KILL AWARD (\$)-1/3-{100.0000000, 300.00000000}	2	3,6353385	27,2809032
9	6	KILL AWARD (\$)-3/3-{300.0000000, 900.00000000}	2	3,6353385	30,3223791
10	40	ACCURATE RANGE (M)-1/3-{2.0000000, 15.0000000}	14	3,5535125	33,2953961
11	21	DPS-3/3-{333.0000000, 467.0000000}	7	3,5258152	36,2452403
12	33	MAX AMMO-3/3-{90.0000000, 300.0000000}	11	3,4584367	39,1387128
13	15	RATE OF FIRE-3/3-{666.0000000, 857.0000000}	5	3,2418828	41,8510073
14	10	MAX SPEED-1/3-{150.0000000, 220.0000000}	4	3,2373434	44,559504
15	42	ACCURATE RANGE (M)-3/3-{24.0000000, 76.0000000}	14	3,2114989	47,2463781
16	34	RELOAD (SEC)-1/3-{2.1000000, 2.5000000}	12	3,1498521	49,8816758
17	7	KILLS TO REBUY-1/3-{0.6666667, 1.7500000}	3	3,1389395	52,5078437
18	44	SPREAD-2/3-{0.6000000, 2.0000000}	15	3,0227892	55,0368354
19	22	ARMOR PENETRATION (%)-1/3-{47.0000000, 64.0000000}	8	2,8370794	57,4104544
20	31	MAX AMMO-1/3-{8.0000000, 52.0000000}	11	2,80231	59,754984
21	16	DAMAGE-1/3-{26.0000000, 30.0000000}	6	2,7635584	62,0670923
22	19	DPS-1/3-{70.0000000, 284.0000000}	7	2,691672	64,3190575
23	2	COST (\$)-2/3-{1050.0000000, 1800.0000000}	1	2,6046715	66,4982345
24	14	RATE OF FIRE-2/3-{352.0000000, 666.0000000}	5	2,5360151	68,6199706
25	28	CLIP SIZE-1/3-{5.0000000, 13.0000000}	10	2,5360151	70,7417067
26	37	RECOIL MAGNITUDE-1/3-{16.0000000, 21.0000000}	13	2,5029395	72,8357704
27	26	PENETRATION-2/3-{1.0000000, 2.0000000}	9	2,4832774	74,9133839

28	29	CLIP SIZE-2/3-{13.0000000, 30.00000000}	10	2,4832774	76,9909975
29	20	DPS-2/3-{284.0000000, 333.0000000}	7	2,4434787	79,0353138
30	8	KILLS TO REBUY-2/3-{1.7500000, 5.6666667}	3	2,1670437	80,848353
31	45	SPREAD-3/3-{2.0000000, 62.0000000}	15	2,1602469	82,6557058
32	36	RELOAD (SEC)-3/3-{3.1000000, 5.7000000}	12	1,9503645	84,2874622
33	39	RECOIL MAGNITUDE-3/3-{28.0000000, 165.0000000}	13	1,9301529	85,9023087
34	24	ARMOR PENETRATION (%)-3/3-{77.6500000, 100.00000000}	8	1,8994323	87,4914531
35	13	RATE OF FIRE-1/3-{41.0000000, 352.0000000}	5	1,8149704	89,0099331
36	18	DAMAGE-3/3-{36.0000000, 256.0000000}	6	1,8149704	90,5284131
37	27	PENETRATION-3/3-{2.0000000, 2.5000000}	9	1,8149704	92,0468931
38	35	RELOAD (SEC)-2/3-{2.5000000, 3.1000000}	12	1,6686263	93,4429355
39	23	ARMOR PENETRATION (%)-2/3-{64.0000000, 77.6500000}	8	1,6597897	94,8315849
40	41	ACCURATE RANGE (M)-2/3-{15.0000000, 24.0000000}	14	1,4142136	96,0147751
41	38	RECOIL MAGNITUDE-2/3-{21.0000000, 28.0000000}	13	1,3897383	97,1774881
42	17	DAMAGE-2/3-{30.0000000, 36.0000000}	6	1,2947859	98,2607601
43	30	CLIP SIZE-3/3-{30.0000000, 150.0000000}	10	1,2563564	99,3118803
44	11	MAX SPEED-2/3-{220.0000000, 230.0000000}	4	0,8224783	100
45	5	KILL AWARD (\$)-2/3-{300.0000000, 300.0000000}	2	0	100

Из рисунка 29 и таблицы 6 видно, что 50% наиболее ценных для решения задачи идентификации характеристик оружия обуславливают 65% суммарной ценности, а 50% суммарной ценности обеспечиваются 36% наиболее ценных характеристик оружия.

Обращаем внимание, что наиболее ценным является низкая стоимость оружия, а наименее ценным — средний заработок за убийство, причем наименее ценный фактор является бессмысленным.

Из таблицы 6 видно, что наиболее сильное влияние на класс оружия оказывают значения характеристик:

- COST (\$)-1/3-{200.0000000, 1050.0000000};
- SPREAD-1/3-{0.2000000, 0.6000000};
- MAX AMMO-2/3-{52.0000000, 90.00000000};
- PENETRATION-1/3-{0.0000000, 1.00000000};
- KILLS TO REBUY-3/3-{5.6666667, 47.5000000};

а наиболее низкое:

- RECOIL MAGNITUDE-2/3-{21.0000000, 28.0000000};
- DAMAGE-2/3-{30.0000000, 36.00000000};
- CLIP SIZE-3/3-{30.0000000, 150.00000000};
- $-\,MAX\,\,SPEED\text{-}2/3\text{-}\{220.0000000,\,230.00000000\};$
- $\ KILL \ AWARD \ (\$) 2/3 \{300.0000000, \ 300.0000000\}.$

Ценность же характеристик оружия (всей описательной шкалы или фактора), для решения этих задач можно количественно оценивать как среднее от ценности значений этого параметра (таблица 7).

Таблица 7 — Парето-таблица значимости описательных шкал, т.е. сила влияния характеристик оружия на его класс в СК-модели INF3

				Значимость
			Значи_	нарастающим
№	Код	Название описательной шкалы	мость, %	итогом
1	1	COST (\$)	9,0180131	9,0180131
2	11	MAX AMMO	8,8327181	17,8507312
3	3	KILLS TO REBUY	7,9655013	25,8162325
4	15	SPREAD	7,9548449	33,7710774
5	7	DPS	7,2461256	41,0172030
6	9	PENETRATION	7,1311344	48,1483374
7	14	ACCURATE RANGE (M)	6,8430810	54,9914185

8	4	MAX SPEED	6,5226557	61,5140742
9	5	RATE OF FIRE	6,3525106	67,8665848
10	2	KILL AWARD (\$)	6,0829519	73,9495367
11	12	RELOAD (SEC)	5,6630967	79,6126334
12	8	ARMOR PENETRATION (%)	5,3514129	84,9640463
13	10	CLIP SIZE	5,2504700	90,2145163
14	6	DAMAGE	4,9138604	95,1283766
15	13	RECOIL MAGNITUDE	4,8716234	100,0000000

Из таблицы 7 видно, что наиболее сильное влияние на вид оружия оказывают его стоимость и боезапас, а наиболее низкое – урон и отдача.

4.3.9. Степень детерминированности класса (вида) оружия

Степень детерминированности (обусловленности) класса в системе «Эйдос» количественно оценивается *степенью вариабельности значений* факторов (градаций описательных шкал) в колонке матрицы модели, соответствующей данному классу (таблица 8).

В данной работе у нас классами являются виды оружия, а значениями градаций описательных шкал – их характеристики.

На рисунке 30 мы видим Парето-кривую степени детерминированности классов значениями характеристик нарастающим итогом.

Рисунок 30. Парето-кривая степени детерминированности классов

Таблица 8 – Парето-таблица степеней детерминированности (обусловленности) классов оружия в СК-модели INF3

				Значимость
				нарастающим
No	Код класса	Название класса	Значимость, %	итогом
1	3	CATEGORY-3/4-Rifle	32,6321331	32,6321331
2	2	CATEGORY-2/4-Pistol	26,5457317	59,1778648
3	4	CATEGORY-4/4-SMG	24,7591250	83,9369898
4	1	CATEGORY-1/4-Heavy	16,0630102	100,0000000

Из таблицы 8 мы видим, что значения характеристик наиболее сильно детерминируют (обуславливают) такие классы оружия, как винтовки (rifle) и пистолеты (pistol), а наиболее слабо — пистолеты-пулеметы (SMG) и тяжелое оружие (heavy). При этом степень детерминированности наиболее и

наименее детерминированных классов отличается в два раза, что довольно существенно.

Чем выше степень детерминированности класса оружия значениями его характеристик, тем легче определить этот класс по параметрам оружия.

7. Выводы

Как показывает анализ результатов численного эксперимента предложенное и реализованное в системе «Эйдос» решение поставленных задач является вполне эффективным, что позволяет обоснованно утверждать, что цель работы достигнута, поставленная проблема решена.

В результате проделанной работы, с помощью системы «Эйдос» были созданы 3 статистические и 7 системно-когнитивных моделей, в которых непосредственно на основе эмпирических данных сформированы обобщенные образы классов по различным классам оружия, изучено влияние характеристик оружия из Counter-Strike: Global Offensive на эти классы, и, на основе этого, решены задачи идентификации, классификации и исследования моделируемой предметной области путем исследования ее модели.

Со всеми моделями, созданными в данной статье, можно ознакомиться установив облачное Эйдос-приложение №209 в режиме 1.3 системы «Эйдос».

Список литературы

- 1. Лойко В.И. Подходы к автоматизации процессов управления производством продукции растениеводства / В.И. Лойко, С.А. Курносов, В.В. Ткаченко, Н.А. Ткаченко // Экономико-правовые аспекты реализации стратегии модернизации России: поиск модели эффективного социохозяйственного развития: сб. стат. междунар. науч.-практ. конф., Сочи, 5-9 октября 2016 г. М.: НИИ ЭИП2016. С. 128-132.
- 2. Луценко Е. В., Лойко В. И., Лаптев В. Н. Системы представления и приобретения знаний: учеб. пособие / Е. В. Луценко, В. И. Лойко, В. Н. Лаптев. Краснодар: Экоинвест, 2018. 513 с. ISBN 978-5-94215-415-8. https://elibrary.ru/item.asp?id=35641755
- 3. Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). Краснодар: КубГАУ. 2002. 605 с. http://elibrary.ru/item.asp?id=18632909
- 4. Луценко Е.В. Инвариантное относительно объемов данных нечеткое мультиклассовое обобщение F-меры достоверности моделей Ван Ризбергена в АСКанализе и системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2017. №02(126). С. 1 32. IDA [article ID]: 1261702001. Режим доступа: http://ej.kubagro.ru/2017/02/pdf/01.pdf 2 у.п.л.
- 5. Луценко Е.В. Количественный автоматизированный SWOT- и PEST-анализ средствами АСК-анализа и интеллектуальной системы «Эйдос-Х++» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. №07(101). С.
- 1367 1409. IDA [article ID]: 1011407090. Режим доступа: http://ej.kubagro.ru/2014/07/pdf/90.pdf 2,688 у.п.л.

- 6. Луценко Е.В. Метод когнитивной кластеризации или кластеризация на основе знаний (кластеризация в системно-когнитивном анализе и интеллектуальной системе «Эйдос») / Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2011. №07(071). С. 528 576. Шифр Информрегистра: 0421100012\0253, IDA [article ID]: 0711107040. Режим доступа: http://ej.kubagro.ru/2011/07/pdf/40.pdf 3,062 у.п.л.
- 7. Луценко Е.В. Метризация измерительных шкал различных типов и совместная сопоставимая количественная обработка разнородных факторов в системнокогнитивном анализе и системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. №08(092). С. 859 883. IDA [article ID]: 0921308058. Режим доступа: http://ej.kubagro.ru/2013/08/pdf/58.pdf 1,562 у.п.л.
- 8. Луценко Е.В. Моделирование сложных многофакторных нелинейных объектов управления на основе фрагментированных зашумленных эмпирических данных большой размерности в системно-когнитивном анализе и интеллектуальной системе «Эйдос-Х++» / Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. №07(091). С. 164 188. IDA [article ID]: 0911307012. Режим доступа: http://ej.kubagro.ru/2013/07/pdf/12.pdf 1,562 у.п.л.
- 9. Луценко Е.В. Открытая масштабируемая интерактивная интеллектуальная online среда для обучения и научных исследований на базе АСК-анализа и системы «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2017. №06(130). С. 1 55. IDA [article ID]: 1301706001. Режим доступа: http://ej.kubagro.ru/2017/06/pdf/01.pdf, 3,438 у.п.л. http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf
- 10. Луценко Е.В. Системная теория информации и нелокальные интерпретируемые нейронные сети прямого счета / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2003. №01(001). С. 79 91. IDA [article ID]: 0010301011. Режим доступа: http://ej.kubagro.ru/2003/01/pdf/11.pdf 0,812 у.п.л.
- 11. Луценко Е.В. Системно-когнитивное моделирование влияния агротехнологий на урожайность и качество пшеницы и решение задач прогнозирования, поддержки принятия решений и исследования предметной области / Е.В. Луценко, Е.К. Печурина // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2019. №03(147). С. 62 128. IDA [article ID]: 1471903015. Режим доступа: http://ej.kubagro.ru/2019/03/pdf/15.pdf 4,188 у.п.л.
- 12. Луценко Е.В., Открытая масштабируемая интерактивная интеллектуальная online среда «Эйдос» («Эйдос-online»). Свид. РосПатента РФ на программу для ЭВМ, Заявка № 2017618053 от 07.08.2017, Гос.рег.№ 2017661153, зарегистр. 04.10.2017. Режим доступа: http://lc.kubagro.ru/aidos/2017661153.jpg 2 у.п.л.
- 13. Орлов А.И., Луценко Е.В. Системная нечеткая интервальная математика. Монография (научное издание). Краснодар, КубГАУ. 2014. 600 с. ISBN 978-5- 94672-757-0. http://elibrary.ru/item.asp?id=21358220