Идентификация страны производителя вина по параметрам технологии с применением АСКанализа

Луценко Евгений Вениаминович д.э.н., к.т.н., профессор Scopus Author ID: 57188763047 РИНЦ SPIN-код: 9523-7101

prof.lutsenko@gmail.com http://lc.kubagro.ru

Мирзоян Геворг Андраникович mirzoyan70@yandex.ru

Предложена системно-когнитивная модель и способ косвенной идентификации разницы по технологии производства вин в разных странах, имеющий ряд преимуществ перед традиционным подходом. Эта модель отражает объективно существующие взаимосвязи между технологиями производства вин и странами производства. Эти взаимосвязи выявлены авторами способа путем математической обработки 112 эмпирических проб. Для этого ими был применен АСК-анализ, реализованный в системе «Эйдос». Данная задача квалиметрии относится также к типичным задачам распознавания образов (многопараметрической типизации и системной идентификации), и, поэтому вполне возможно, что качество ее решения может быть повышено путем применения методов искусственного интеллекта, в частности когнитивных и информационных технологий. Тем более, что эти взаимосвязи имеют довольно сложный характер. Применение интеллектуальных технологий открывает также дополнительные возможности для исследования моделируемой предметной области путем исследования ее модели. Все это представляет большой научный и практический интерес как для ученых исследователей, а так и для практиков. Для решения всех этих задач в работе применен Автоматизированный системно-когнитивный анализ (АСК-анализ) и его программный инструментарий – интеллектуальная система «Эйдос». Подробно рассмотрен численный пример, основанный на реальных данных

КЛЮЧЕВЫЕ СЛОВА: АСК-АНАЛИЗ, АВТОМАТИЗИРОВАННЫЙ СИСТЕМНО-КОГНИТИВНЫЙ АНАЛИЗ, СИСТЕМА «ЭЙДОС», СТРАНЫ, ВИНА, ТЕХНОЛОГИИ, ИЗМЕРЕНИЕ.

Identification of the country of wine producer according to the parameters of the technology with the use of ASK-analysis

Lutsenko Evgeniy Veniaminovich Dr.Sci.Econ., Cand.Tech.Sci., professor Scopus Author ID: 57188763047 RSCI SPIN-code: 9523-7101

prof.lutsenko@gmail.com http://lc.kubagro.ru

Mirzoyan Gevorg Andranikovich mirzoyan 70@ yandex.ru

A system-cognitive model and a method of indirect identification of differences in wine production technology in different countries are proposed, which has a number of advantages over the traditional approach. This model reflects objectively existing relationships between wine production technologies and countries of production. These relationships were identified by the authors of the method by mathematical processing of 112 empirical samples. To do this, they used the ask analysis implemented in the Eidos system. This problem of qualimetry also applies to typical problems of pattern recognition (multiparametric typing and system identification), and, therefore, it is possible that the quality of its solution can be improved by using artificial intelligence methods, in particular cognitive and information technologies. Moreover, these relationships are quite complex. The use of intelligent technologies also opens up additional opportunities for the study of the simulated subject area by examining its model. All this is of great scientific and practical interest for both researchers and practitioners. To address all these challenges, I used the Automated system-cognitive analysis (ASC-analysis) and its programmatic Toolkit - intellectual system "Eidos". A numerical example based on real data is considered in detail

KEYWORDS: ASK-ANALYSIS, AUTOMATED SYSTEM-COGNITIVE ANALYSIS, EIDOS SYSTEM, COUNTRIES, WINES, TECHNOLOGIES, MEASUREMENT.

ВВЕДЕНИЕ	
ЗАДАЧА 1: КОГНИТИВНАЯ СТРУКТУРИЗАЦИЯ ПРЕДМЕТНОЙ ОБЛАСТИ	7
ЗАДАЧА 2: ПОДГОТОВКА ИСХОДНЫХ ДАННЫХ И ФОРМАЛИЗАЦИЯ ПРЕДМЕТНОЙ ОБЛАСТИ	}
ЗАДАЧА 3: СИНТЕЗ И ВЕРИФИКАЦИЯ СТАТИСТИЧЕСКИХ И СИСТЕМНО-КОГНИТИВНЫХ МОДЕЛЕЙ И ВЫБОР НАИБОЛЕЕ ДОСТОВЕРНОЙ ИЗ НИХ ДЛЯ РЕШЕНИЯ ЗАДАЧ19	
ЗАДАЧА 4: РЕШЕНИЕ РАЗЛИЧНЫХ ЗАДАЧ В НАИБОЛЕЕ ДОСТОВЕРНОЙ МОДЕЛИ 27	7
Подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, идентификация)	7
Подзадача 4.2. Поддержка принятия решений (SWOT-анализ))
Подзадача 4.3. Исследование моделируемой предметной области путем исследования ее	
модели	5
4.3.1. Когнитивные диаграммы классов	5
4.3.2. Агломеративная когнитивная кластеризация классов	5
4.3.3. Когнитивные диаграммы значений факторов	3
4.3.4. Агломеративная когнитивная кластеризация значений факторов40)
4.3.5. Нелокальные нейроны и нелокальные нейронные сети	1
4.3.6. Сила и направление влияния значений параметров производственных технологий вин	
на место их изготовления	3
4.3.9. Степень детерминированности качества вина значениями параметров	
производственных технологий40	5
4.3.10. Устойчивость производственных технологий вина в разных странах	3
7. ВЫВОДЫ	L
ЛИТЕРАТУРА	l

Введение

Предложена регрессионная модель и способ косвенной оценки разницы по технологии производства вин в разных странах, имеющий ряд преимуществ перед традиционным подходом.

Эта модель отражает объективно существующие взаимосвязи между странами. Эти взаимосвязи выявлены авторами способа путем математической обработки 112 эмпирических проб. Для этого ими был применен регрессионный и корреляционный анализ (в MS Excel).

Так как содержание жира и белков в молоке во многом определяет его качество, то данная задача относится к задачам квалиметрии..

Данная задача относится не только к квалиметрии, но и к типичным задачам распознавания образов (многопараметрической типизации, т.е. формирования обобщенных образов классов на основе описаний объектов, и системной идентификации объектов, т.е. определения принадлежности объектов к классам), и, поэтому возможно, что качество ее решения может быть повышено путем применения более адекватных для подобных задач методов искусственного интеллекта, в частности когнитивных и информационных технологий. Применение интеллектуальных технологий открывает также дополнительные возможности для исследования моделируемой предметной области путем исследования ее модели. Все это представляет большой научный и практический интерес как для ученых исследователей, а так и для практиков.

Поэтому **целью** данной работы является разработка интеллектуальных моделей, отражающих реально существующие причинно-следственные взаимосвязи между странами и параметрами их технологий производства вина, а также их цены и оценки, которые даются экспертами за их качество, так и для исследования моделируемой предметной области.

Для достижения поставленной цели в данной работе предлагается применить Автоматизированный системно-когнитивный анализ (АСКанализ) и его программный инструментарий – интеллектуальная система «Эйдос».

АСК-анализ предполагает, что для достижения поставленной цели необходимо решить следующие задачи, которые получаются путем декомпозиции цели и являются этапами ее достижения:

Задача 1: когнитивная структуризация предметной области.

<u>Задача 2:</u> подготовка исходных данных и формализация предметной области.

Задача 3: синтез и верификация статистических и системно-когнитивных моделей и выбор наиболее достоверной модели.

Задача 4: решение различных задач в наиболее достоверной модели:

- подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, идентификация);
 - подзадача 4.2. Поддержка принятия решений;
- подзадача 4.3. Исследование моделируемой предметной области путем исследования ее модели (когнитивные диаграммы классов и значений факторов, агломеративная когнитивная кластеризация классов и

значений факторов, нелокальные нейроны и нейронные сети, 3dинтегральные когнитивные карты, когнитивные функции и др.).

Эти задачи по сути представляют собой этапы Автоматизированного системно-когнитивный анализа (АСК-анализ), который и поэтому и предлагается применить для их решения.

АСК-анализ представляет собой метод искусственного интеллекта, разработанный проф. Е.В. Луценко в 2002 году для решения широкого класса задач идентификации, прогнозирования, классификации, диагностики, поддержки принятия решений и исследования моделируемой предметной области путем исследования ее модели. АСК-анализ доведен до **инновационного** уровня благодаря тому, что имеет свой программный инструментарий — универсальную когнитивную аналитическую систему «Эйдос-Х++» (система «Эйдос») [7-17].

Система «Эйдос» выгодно отличается от других интеллектуальных систем следующими параметрами:

- разработана в универсальной постановке, не зависящей от предметной области. Поэтому она является универсальной и может быть применена во многих предметных областях (http://lc.kubagro.ru/aidos/index.htm);
- находится в полном открытом бесплатном доступе (http://lc.kubagro.ru/aidos/_Aidos-X.htm), причем с актуальными исходными текстами (http://lc.kubagro.ru/_AIDOS-X.txt);
- является одной из первых отечественных систем искусственного интеллекта персонального уровня, т.е. она не требует от пользователя специальной подготовки в области технологий искусственного интеллекта (есть акт внедрения системы «Эйдос» 1987 года) (http://lc.kubagro.ru/aidos/aidos/2/PR-4.htm);
- обеспечивает устойчивое выявление в сопоставимой форме силы и направления причинно-следственных зависимостей в неполных зашумленных взаимозависимых (нелинейных) данных очень большой размерности числовой и не числовой природы, измеряемых в различных типах шкал (номинальных, порядковых и числовых) и в различных единицах измерения (т.е. не предъявляет жестких требований к данным, которые невозможно выполнить, а обрабатывает те данные, которые есть);
- содержит большое количество локальных (поставляемых с инсталляцией) и облачных учебных и научных приложений (в настоящее время их 31 и 194, соответственно) (http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf);

- обеспечивает мультиязычную поддержку интерфейса на 44 языках. Языковые базы входят в инсталляцию и могут пополняться в автоматическом режиме;
- поддерживает on-line среду накопления знаний и широко используется во всем мире (http://aidos.byethost5.com/map5.php);
- наиболее трудоемкие в вычислительном отношении операции синтеза моделей и распознавания реализует с помощью графического процессора (GPU), что на некоторых задачах обеспечивает ускорение решение этих задач в несколько тысяч раз, что реально обеспечивает интеллектуальную обработку больших данных, большой информации и больших знаний;
- обеспечивает преобразование исходных эмпирических данных в информацию, а ее в знания и решение с использованием этих знаний задач классификации, поддержки принятия решений и исследования предметной области путем исследования ее системно-когнитивной модели, генерируя при этом очень большое количество табличных и графических выходных форм (развития когнитивная графика), у многих из которых нет никаких аналогов в других системах (примеры форм можно посмотреть в работе: http://lc.kubagro.ru/aidos/aidos18_LLS/aidos18_LLS.pdf);
- хорошо имитирует человеческий стиль мышления: дает результаты анализа, понятные экспертам на основе их опыта, интуиции и профессиональной компетенции.

Всем этим и обусловлен выбор АСК-анализа и его программного инструментария – интеллектуальной системы «Эйдос» в качестве метода и инструмента решения поставленной проблемы и достижения цели работы (рисунок 1).

Последовательность обработки данных, информации и знаний в системе «Эйдос-Х++»

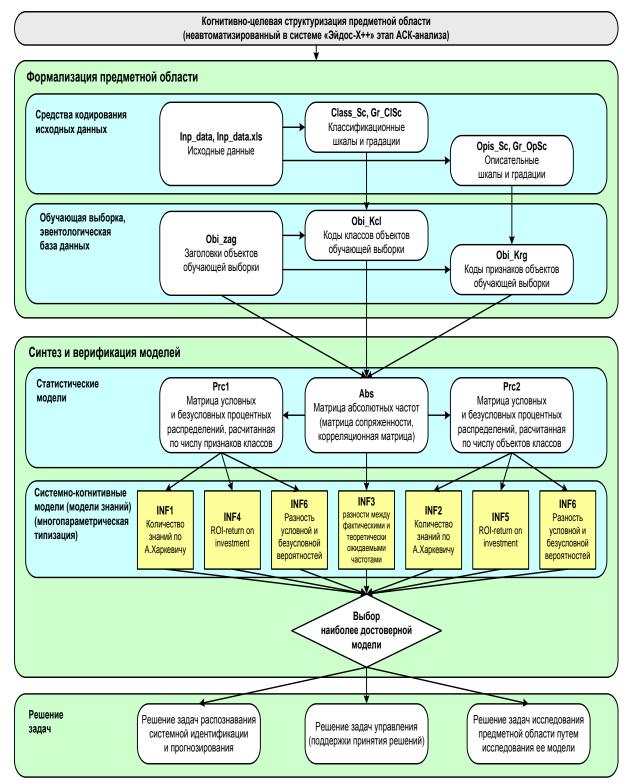


Рисунок 1. Последовательность решения задач в АСК-анализе и системе «Эйдос»

Рассмотрим решение поставленных задач в подробном численном примере.

Задача 1: когнитивная структуризация предметной области

На этапе когнитивно-целевой структуризации предметной области мы неформализуемым путем решаем на качественном уровне, что будем рассматривать в качестве факторов, действующих на моделируемый объект (причин), а что в качестве результатов действия этих факторов (последствий).

При этом необходимо отметить, что системно-когнитивные модели (СК-модели) отражают лишь сам факт наличия зависимостей между значениями факторов и результатами их действия. Но они не отражают причин и механизмов такого влияния.

Это значит:

- <u>во-первых</u>, что содержательная интерпретация СК-моделей это компетенция специалистов-экспертов хорошо разбирающихся в данной предметной области. Иногда встречается ситуация, когда и то, что на первый взгляд является причинами, и то, что казалось бы является их последствиями, на самом деле является последствиями неких глубинных причин, которых мы не видим и никоим образом непосредственно не отражаем в модели [17];
- <u>во-вторых</u>, даже если содержательной интерпретации не разработано, то в принципе это не исключает возможности пользоваться ими на практике для достижения заданных результатов и поставленных целей, т.е. для управления [17].

В данной работе в качестве классификационных шкал выберем страны производителя (таблица 1), а в качестве факторов, влияющих на эти результаты – различные параметры технологий производства, а также их оценки качества (таблица 2):

Таблица1 – Классификационные шкалы (фрагмент)

KOD_CLSC	NAME_CLSC
1	COUNTRY

Таблица 2 – Описательные шкалы

KOD_OPSC	NAME_OPSC
1	DESCRIPTION
2	DESIGNATION
3	POINTS
4	PRICE
5	PROVINCE
6	REGION_1
7	REGION_2

8	VARIETY
9	WINERY

Задача 2: подготовка исходных данных и формализация предметной области

Исходные данные для данной статьи (таблица 3) взяты без изменения из работы [1]. Исходные данные приведены полностью.

Таблица 3 – Исходные экспериментальные данные для ввода в систему «Эйдос» (фрагмент).

		1	poi	\11	provi	regio	regio	varie	
country	description	designation	nts	price	nce	n_1	n_2	ty	winery
oo arrei y	a.cocp.a.c	a congruence.		pcc				-,	
	This tremendous 100%								
	varietal wine hails from								
	Oakville and was aged								
	over three years in oak.								
	Juicy red-cherry fruit								
	and a compelling hint of								
	caramel greet the								
	palate, framed by								
	elegant, fine tannins								
	and a subtle minty tone								
	in the background.								
	Balanced and rewarding								
	from start to finish, it					١		Cabe	
	has years ahead of it to			225	0 1:0	Napa		rnet	
	develop further nuance.	Martha's	0.6	235,	Calif	Valle	١	Sauvi	
US	Enjoy 2022–2030.	Vineyard	96	00	ornia	У	Napa	gnon	Heitz
	Ripe aromas of fig,								
	blackberry and cassis are softened and								
	sweetened by a slathering of oaky								
	chocolate and vanilla.								
	This is full, layered,	Carodorum							Bodega
	intense and cushioned	SelecciFin			Nort			Tinta	Carmen
	on the palate, with rich	Especial		110,	hern			de	RodrΓ-
Spain	flavors of chocolaty	Reserva	96	00	Spain	Toro		Toro	guez

 $^{^1}$ Таблицу исходных данных 1 можно скачать с FTP-сервера системы «Эйдос» по ссылке: http://aidos.byethost5.com/Source data applications/Applications-000154/Inp data.xls. Данная таблица взята из работы [1].

	black fruits and baking spices. A toasty, everlasting finish is heady but ideally balanced. Drink through								
	Mac Watson honors the memory of a wine once made by his mother in this tremendously delicious, balanced and complex botrytised white. Dark gold in color, it layers toasted hazelnut, pear compote and orange peel flavors, reveling in the succulence of its 122 g/L	Special Selected Late		90,0	Calif	Knig hts Valle	Sono	Sauvi	Macaule
US	of residual sugar.	Harvest	96	90,0	ornia	у	ma	Blanc	у
US	This spent 20 months in 30% new French oak, and incorporates fruit from Ponzi's Aurora, Abetina and Madrona vineyards, among others. Aromatic, dense and toasty, it deftly blends aromas and flavors of toast, cigar box, blackberry, black cherry, coffee and graphite. Tannins are polished to a fine sheen, and frame a finish loaded with dark chocolate and espresso. Drink now through 2032.	Reserve	96	65,0 0	Oreg	Willa mett e Valle y	Willa mett e Valle y	Pinot Noir	Ponzi
	This is the top wine from La Br@gude, named after the highest point in the vineyard at 1200 feet. It has structure, density and considerable acidity that is still calming down. With 18 months in wood, the wine has developing an extra			66,0	Prov	Band		Prov ence red blen	Domaine de la
France	richness and	La BrΓ»lade	95	00,0	ence	ol		d	BΓ©gude

	concentration. Produced by the Tari family, formerly of ChFÿteau Giscours in Margaux, it is a wine made for aging. Drink from 2020.							
Spain	Deep, dense and pure from the opening bell, this Toro is a winner. Aromas of dark ripe black fruits are cool and moderately oaked. This feels massive on the palate but sensationally balanced. Flavors of blackberry, coffee, mocha and toasty oak finish spicy, smooth and heady. Drink this exemplary Toro through 2023.	Numanthia	95	73,0 0	Nort hern Spain	Toro	Tinta de Toro	Numanth
	Slightly gritty black-fruit aromas include a sweet note of pastry along with a hint of prune. Wall-to-wall saturation ensures that all corners of one's mouth are covered. Flavors of blackberry, mocha and chocolate are highly impressive and expressive, while this settles nicely on a long finish. Drink now	San		65,0	Nort hern		Tinta de	Maurodo
Spain	through 2024. Lush cedary black-fruit aromas are luxe and offer notes of marzipan and vanilla. This bruiser is massive and tannic on the palate, but still lush and friendly. Chocolate is a key flavor, while baked berry and cassis flavors are hardly wallflowers. On the finish, this is tannic and deep as a sea trench.	RomГЎn Carodorum Гљпісо Crianza	95 95	110, 00	Nort hern Spain	Toro	Tinta de Toro	Bodega Carmen Rodr[- guez

	Drink this saturated black-colored Toro through 2023.								
	This re-named vineyard was formerly bottled as deLancellotti. You'll find striking minerality underscoring chunky black fruits. Accents of citrus and graphite comingle, with exceptional midpalate concentration. This is a					Cheh	Willa		
	wine to cellar, though it					alem	mett		
	is already quite enjoyable. Drink now			65,0	Oreg	Mou ntain	e Valle	Pinot	BergstrΓ
US	through 2030.	Silice	95	05,0	on	S	у	Noir	¶m
US	The producer sources from two blocks of the vineyard for this wines B"one at a high elevation, which contributes bright acidity. Crunchy cranberry, pomegranate and orange peel flavors surround silky, succulent layers of texture that present as fleshy fruit. That delicately lush flavor has considerable length.	Gap's Crown Vineyard	95	60,0 0	Calif ornia	Sono ma Coas t	Sono	Pinot Noir	Blue Farm
US	Elegance, complexity and structure come together in this dropdead gorgeous winethat ranks among Italy's greatest whites. It opens with sublime yellow spring flower, aromatic herb and orchard fruit scents. The creamy, delicious palate seamlessly combines		93		Nort heast		IIId		
Italy	juicy white peach, ripe pear and citrus flavors	Ronco della Chiesa	95	80,0 0	ern Italy	Colli o		Friul ano	Borgo del Tiglio

	while white almond and savory mineral notes grace the lingering finish.								
	From 18-year-old vines, this supple well-balanced effort blends flavors of mocha, cherry, vanilla and breakfast tea. Superbly integrated and delicious even at this early stage, this wine seems destined for a long and savory cellar life. Drink	Estate Vineyard Wadensvil		48,0	Oreg	Ribb on Ridg	Willa mett e Valle	Pinot	Patricia Green
US	now through 2028. A standout even in this terrific lineup of 2015 releases from Patricia Green, the Weber opens with a burst of cola and tobacco scents and accents. It continues, subtle and detailed, with flavors of oranges, vanilla, tea and milk chocolate discreetly threaded through ripe blackberry	Block	95	48,0	on Oreg	e Dund ee	Willa mett e Valle	Noir	Patricia Green
US France	fruit. This wine is in peak condition. The tannins and the secondary flavors dominate this ripe leather-textured wine. The fruit is all there as well: dried berries and hints of black-plum skins. It is a major wine right at the point of drinking with both the mature flavors and the fruit in the right balance.	Vineyard ChΓÿteau Montus Prestige	95	90,0	Sout hwes t Franc e	Hills Madi ran	У	Noir Tann at	Vignoble s Brumont

	With its sophisticated					l		l	
	mix of mineral, acid and								
	tart fruits, this seductive								
	effort pleases from start								
	to finish. Supple and								
	dense, it's got								
	strawberry, blueberry,								
	plum and black cherry, a								
	<u> </u>								
	touch of chocolate, and								
	that underlying streak								
	of mineral. All these								
	elements are in good								
	proportion and finish								
	with an appealing silky texture. It's delicious						Willa		
	already, but give it					Dund	mett		
	another decade for full	C		405	0	Dund	e	Dia at	D i
LIC	enjoyment. Drink now	Grace	0.5	185, 00	Oreg	ee Hills	Valle	Pinot	Domaine
US	through 2028. First made in 2006, this	Vineyard	95	00	on	піііѕ	У	Noir	Serene
	succulent luscious								
	Chardonnay is all about								
	minerality. It's got a rich								
	core of butterscotch								
	and the seemingly								
	endless layers of subtle								
	flavors that biodynamic								
	farming can bring. It					Willa	Willa		
	spends 18 months on					mett	mett		
	the lees prior to					e	e	Char	
	bottling. Drink now			90,0	Oreg	Valle	Valle	donn	BergstrΓ
US	through 2028.	Sigrid	95	0	on	y	y	ay	¶m
	This blockbuster,	<u> </u>			-	<i>'</i>	·	,	"
	powerhouse of a wine								
	suggests blueberry pie								
	and chocolate as it								
	opens in the glass. On								
	the palate, it's smooth								
	and seductively silky,								
	offering complex cedar,					Diam			
	peppercorn and					ond			
	peppery oak seasonings					Mou		Cabe	
	amidst its dense					ntain		rnet	
	richness. It finishes with	Rainin		325,	Calif	Distri		Sauvi	
US	finesse and spice.	Vineyard	95	00	ornia	ct	Napa	gnon	Hall

Curin	Nicely oaked blackberry, licorice, vanilla and charred aromas are smooth and sultry. This is an outstanding wine from an excellent year. Forward barrel-spice and mocha flavors adorn core blackberry and raspberry fruit, while this runs long and tastes vaguely chocolaty on the velvety finish. Enjoy this top-notch Tempranillo through	6 ΑΓ±os Reserva		80,0	Nort hern	Riber a del Duer		Tem prani	Vald
Spain	2030.	Premium	95	0	Spain	0		llo	Valduero
France	Coming from a sevenacre vineyard named after the dovecote on the property, this is a magnificent wine. Powered by both fruit tannins and the 28 months of new wood aging, it is darkly rich and with great concentration. As a sign of its pedigree, there is also elegance here, a restraint which is new to this wine. That makes it a wine for long-term aging. Drink from 2022.	Le Pigeonnier	95	290, 00	Sout hwes t Franc e	Caho rs		Malb ec	ChГўteau LagrГ©ze tte
LIC	This fresh and lively medium-bodied wine is beautifully crafted, with cherry blossom aromas and tangy acidity. Layered and seductive, it offers a crisp mix of orange peel, cherry, pomegranate and baking spice flavors that are ready for the table or the cellar.	Gap's Crown	95	75,0 0	Calif	Sono ma Coas	Sono	Pinot Noir	Gary Farrell
US	or the cenar.	Vineyard	90	U	ornia	t	ma	INOII	rantell

Затем с параметрами, показанными на рисунке 2, запустим режим 2.3.2.2 системы «Эйдос», представляющий собой автоматизированный программный интерфейс (API) с внешними данными табличного типа. На рисунке 2 приведены реально использованные параметры.

Задайте тип файла исходных данных: "Inp_o	data":	Задайте параметры:
♠ XLSX-MS Excel-2007(2010)	гандарт XLS-файла гандарт DBF-файла гандарт CSV-файла	 € Нули и пробелы считать ОТСУТСТВИЕМ данных С Нули и пробелы считать ЗНАЧЕНИЯМИ данных ☐ Создавать БД средних по классам "Inp_davr.dbf"? ☐ Требования к файлу исходных данных
Задайте диапазон столбцов классификаци	онных шкал:	Задайте диапазон столбцов описательных шкал:
Начальный столбец классификационных ш Конечный столбец классификационных ши	кал: 2	Начальный столбец описательных шкал: 3 Конечный столбец описательных шкал: 11
Задайте режим:		Задайте способ выбора размера интервалов:
 Формализации предметной области (н 	а основе "Inp_data")	 Равные интервалы с разным числом наблюдений
С Генерации распознаваемой выборки (н	а основе "Inp_rasp")	 Разные интервалы с равным числом наблюдений
Применить спец.интерпретацию тексто Параметры		Применить спец.интерпретацию текстовых полей признако начений текстовых полей "Inp_data":
—Интерпретация ТХТ-полей классов:		В качестве признаков рассматриваются:
Значения полей текстовых классификац	ционных шкал файла	С Значения полей целиком
исходных данных "Inp_data" рассматрив	ваются как целое	 Элементы значений полей - слова > символов:
		С Элементы значений полей - символы
		С Проводить лемматизацию
		 Не проводить лемматизацию
Какие наименования ГРАДАЦИЙ числовых	шкал использовать:—	
 Только интервальные числовые значен 	ния	(например: "1/3-{59873.0000000, 178545.6666667}")
С Только наименования интервальных чи	словых значений	(например: "Минимальное")

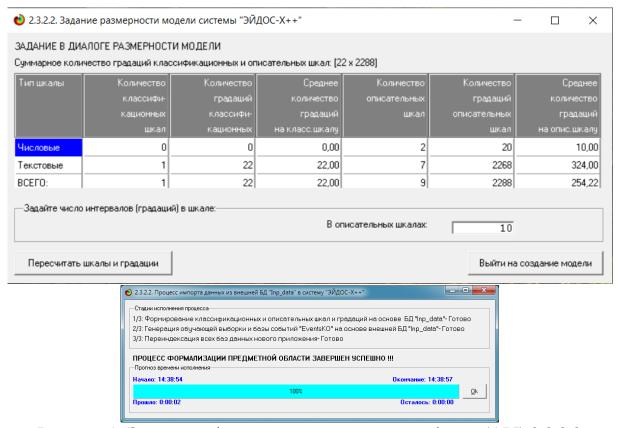


Рисунок 2. Экранные форма программного интерфейса (API) 2.3.2.2 системы «Эйдос» с внешними данными табличного типа

Обратим внимание на то, что заданы адаптивные интервалы, учитывающее неравномерность распределения данных по диапазону значений, что важно при относительно небольшом числе наблюдений. Если бы интервалы были заданы равными по величине, то в них бы учитывалось сильно отличающееся число наблюдений, а в некоторых интервалах их бы могло не оказаться вовсе. И в классификационных, и в описательных шкалах задано 5 числовых интервальных значения.

На рисунке 3 приведен Help данного режима, в котором объясняется принцип организации таблицы исходных данных для данного режима. Здесь же обратим внимание на то, что в таблице 3 как значения параметров технологий производства вина, так и регионы, в которых производят вино, могут быть представлены как числовыми, так и текстовыми значениями.

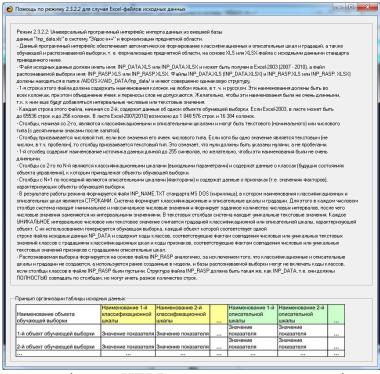


Рисунок 3. Экранные форма HELP программного интерфейса (API) 2.3.2.2²

В результате работы режима сформировано 1 классификационная шкала с суммарным количеством градаций (классов) 10 (таблица 4) и 6 описательных шкал с суммарным числом градаций 30. С использованием классификационных и описательных шкал и градаций (таблицы 4 и 5) исходные данные (таблица 3) были закодированы и в результате получена обучающая выборка (таблица 6):

Таблица 4 – Классификационные шкалы и градации (страны производящие вино)

Код	Название стран
1	COUNTRY-Argentina
2	COUNTRY-Australia
3	COUNTRY-Austria
4	COUNTRY-Bulgaria
5	COUNTRY-Canada
6	COUNTRY-Chile
7	COUNTRY-Croatia
8	COUNTRY-France
9	COUNTRY-Germany
10	COUNTRY-Greece
11	COUNTRY-Hungary
12	COUNTRY-Israel
13	COUNTRY-Italy
14	COUNTRY-Moldova

 $^{^{2}}$ Все рисунки в статье приведены с достаточно высоким разрешением и при увеличении масштаба просмотра вполне читабельны

15	COUNTRY-Morocco
16	COUNTRY-New Zealand
17	COUNTRY-Portugal
18	COUNTRY-Romania
19	COUNTRY-Slovenia
20	COUNTRY-South Africa
21	COUNTRY-Spain
22	COUNTRY-US

Таблица 5 – Описательные шкалы и градации

KOD ATR	NAME ATR
1	DESCRIPTION-1200
2	DESCRIPTION-1961
3	DESCRIPTION-1970s
4	DESCRIPTION-1999
5	DESCRIPTION-2001
6	DESCRIPTION-2003
7	DESCRIPTION-2006
8	DESCRIPTION-2011
9	DESCRIPTION-2012
10	DESCRIPTION-2013
11	DESCRIPTION-2014
12	DESCRIPTION-2015
13	DESCRIPTION-2015B_"2
14	DESCRIPTION-2016
15	DESCRIPTION-2017
16	DESCRIPTION-2018
17	DESCRIPTION-2018B_"2025
18	DESCRIPTION-2018B_"2028
19	DESCRIPTION-2019

Таблица 6 – Обучающая выборка (фрагмент)

NAME_OBJ	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11
US	22	1715	3771	3804	3812	3830	4121	4149	4239	4645
Spain	21	1145	3612	3804	3808	3889	4114		4252	4621
US	22	1075	3384	3804	3807	3830	4121	4154	4173	4744
US	22	552	3613	3804	3806	3871	4121	4157	4224	4877
France	8	806	3431	3804	3806	3875	3924		4176	4382
Spain	21	590	3528	3804	3807	3889	4114		4252	4828
Spain	21	538	3628	3804	3806	3889	4114		4252	4777
Spain	21	1070	3265	3804	3808	3889	4114		4252	4621
US	22	2800	3684	3804	3806	3871	4053	4157	4224	4323
US	22	1493	3771	3804	3806	3830	3962	4154	4224	4543
Italy	13	705	3231	3804	3807	3854	3963		4190	5025
US	22	1580	3175	3804	3806	3871	4078	4157	4224	4421
US	22	2931	3771	3804	3806	3871	4012	4157	4224	4421
France	8	2259	3585	3804	3807	3846	4033		4249	4371
US	22	2782	3771	3804	3810	3871	4012	4157	4224	4970
US	22	1734	3683	3804	3807	3871	4121	4157	4183	4323
US	22	123	3771	3804	3814	3830	3982	4149	4239	4632
Spain	21	1143	3582	3804	3807	3889	3984		4250	5045
France	8	642	3572	3804	3813	3846	3942		4209	4702
US	22	1075	3771	3804	3807	3830	3962	4154	4224	4544
US	22	169	3375	3804	3805	3830	4121	4149	4237	4645
Spain	21	536	3612	3804	3807	3889	4079		4176	4811
Spain	21	680	3724	3804	3811	3889	4114		4252	4828
US	22	2328	3691	3804	3806	3830	4121	4141	4183	4520

US	22	2640	3604	3804	3806	3830	4053	4141	4224	4460
New Zealand	16	3093	3771	3803	3806	3855			4183	4919
US	22	1145	3771	3803	3806	3871	4121		4224	4323
US	22	1316	3105	3803	3808	3871	4121	4157	4224	4877
US	22	890	3771	3803	3806	3830	4011	4141	4224	4923
US	22	1327	3316	3803	3806	3903	4121	4157	4248	4954
Bulgaria	4	476	3163	3799	3805	3827			4212	4784
US	22	1587	3138	3799	3805	3830	4121	4154	4183	5097
Italy	13	1058	3569	3799		3895	4043		4238	4292
France	8	2272	3189	3799	3805	3872	4054		4176	4697
US	22	215	3771	3799	3806	3903	4121	4157	4183	4378
Italy	13	863	3618	3799	3809	3895	4043		4238	4401
France	8	863		3799	3806	3897	4063		4176	4847
Italy	13	2800		3799	3805	3895	4044		4238	4300
Italy	13	628		3799	3805	3895	3959		4238	4467
Italy	13	20	3618	3799	3805	3895	3959		4176	4798
Spain	21	3053	3120	3799	3805	3847	4090		4213	4326
Spain	21	2836	3662	3799	3805	3818	4016		4225	4379
US	22	2935	3613	3799	3806	3853			4244	4658
Italy	13	1125	3618	3799	3806	3895	3959		4176	4917
France	8	1825	3262	3799	3806	3897	3966		4248	4715
Italy	13	1905	3618	3799	3805	3895	3959		4176	5054
Italy	13	2741	3506	3799	3807	3895	4043		4238	4307
US	22	2676	3378	3799	3806	3830	4123	4149	4239	4366
Italy	13	2741		3799	3806	3895	4043		4238	4770
US	22	1523		3799	3806	3903	4052	4157	4239	4395
Italy	13	1054	3618	3799	3807	3895	4043		4238	4910
France	8	3035		3799	3806	3829	4046		4183	5040
France	8	1780	3401	3799	3806	3897	4093		4173	4586
France	8	3053	3429	3799	3805	3897	4001		4224	4329
US	22	1055		3799	3805	3830	4121	4154	4183	4733

Обучающая выборка (таблица 6), по сути, представляет собой нормализованные исходные данные, т.е. таблицу исходных данных (таблица 3), закодированную с помощью классификационных и описательных шкал и градаций (таблицы 4 и 5). Желтым фоном выделена классификационная шкала. Таким образом, созданы все необходимые и достаточные условия для выполнения следующего этапа АСК-анализа: т.е. для синтеза и верификации моделей.

Задача 3: синтез и верификация статистических и системно-когнитивных моделей и выбор наиболее достоверной из них для решения задач

Синтез и верификация статистических и системно-когнитивных моделей (СК-моделей) моделей осуществляется в режиме 3.5 системы «Эйдос» (рисунок 4). Сами эти модели описаны в ряде работ [7-16].

	—Задайте модели для синтеза и верификации		Текчшая модель	
	Статистические базы:		1013401111	
	✓ 1 ABS - частный комтерий: количество встреч сочетани	ий: "класс-плизнак" и объектов обич выболки	C 1 ABS	
			C 2. PRC1	
	3. PRC2 - частный критерий: условная вероятность і-го	признака у объектов ј-го класса	C 3. PRC2	
	Системно-когнитивные модели (базы знаний):			
			● 4. INF1	
		· '		
	To the state of th	Serior, Deportment No.	2 13.1111	
	Параметры копирования обучающей выборки в распознавае	емую:		
	Какие объекты обуч.выборки копировать:	Пояснение по алгоритму верификации	Для каждой заданной	
	 Копировать всю обучающую выборку 		модели выполнить:	
	С Копировать только текущий объект		 Синтез и верификацию 	
	C Копировать каждый N-й объект		С Только верификацию	
	С Копировать N случайных объектов		С Только синтез	
	С Копировать все объекты от N1 до N2			
	С Вообще не менять распознаваемую выборку			
	- Чазаать из обще остбории околительного об это	— Постобиее		
			На каком процессоре	
		измеряется внутренняя достоверн, модели		
	○ Удалять			
			C CPU G GPU	
	<u>O</u> k <u>C</u> ancel			
🕙 3.5. Выбор і	иоделей для синтеза и верификации			X
—Стадии испо	лнения процесса			
	·			
	_ · · · · · · · · · · · · · · · · · · ·	· -		
Шаг2-йиз	11: Синтез стат.модели "ABS" (расче	т матрицы абсолютных частот)	-Готово	
Шаг 3-й из	11: Синтез стат.моделей "PBC1" и "Pf	RC2" (исл.безисл.% распр.) - Гот	robo	
НАЧАЛО Ц	ИКЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНІ			
		ым критериям - исполнен	ИЕ:	
Шаг5-йиз	11: Задание модели "INF7" в качеств		ИЕ:	
		е текущей-Готово	ИЕ:	
Шаг6-йиз	11: Пакетное распознавание в моде:	е текущей - Готово ли "INF?" - Готово		
Шаг6-й из Шаг7-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел	е текущей - Готово ли "INF7" - Готово 1и: "Inf7" - Интегральный критер		 30
Шаг 6-й из Шаг 7-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел	е текущей - Готово ли "INF7" - Готово 1и: "Inf7" - Интегральный критер		 30
Шаг 6-й из Шаг 7-й из КОНЕЦЦИ	11: Пакетное распознавание в моде. 11: Измерение достоверности моде <i>г</i> КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:——		 80
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЫ 11: Объединение БД DostRsp# в БД D	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово	ий: "Сумма знаний" - Готог	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЫ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей ·	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЫ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей ·	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в моде. 11: Измерение достоверности модел КЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЬ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і	ий: "Сумма знаний" - Готоі - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из	11: Пакетное распознавание в модел 11: Измерение достоверности модел IKЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЫ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль з 11: Создание формы: "Достовернос" з 11: "Присвоение заданной модели:	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і nf1 статуса текущей" - Готово	ий: "Сумма знаний" - Готоі - Готово чоделях" - Готово	 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 10-й из Шаг 11-й из	11: Пакетное распознавание в модел 11: Измерение достоверности модел IKЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЫ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль 3 11: Создание формы: "Достовернос 3 11: "Присвоение заданной модели: I	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:—— lostRasp - Готово ьтатам верификации моделей · ть идент.классов в различных і nf1 статуса текущей" - Готово	ий: "Сумма знаний" - Готоі - Готово чоделях" - Готово	= 30
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 10-й из Шаг 11-й из	Р 1.265: Часта профессование об ученование по образование об ученование по образование об ученование об ученован	= 30 		
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из Шаг 11-й из	Р. 2 № 2 - можная догова до разраб кольтерно средней с карстирова с догова до	30		
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 10-й из Шаг 11-й из	Образования по ответем в верейниция и предоставля по образования			
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из Шаг 11-й из	11: Пакетное распознавание в модел 11: Измерение достоверности модел ІКЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЫ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль 3 11: Создание формы: "Достоверноста 11: "Присвоение заданной модели: "В 11: "Присвоение заданной модели: В 11: "Присвоение за	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:— lostRasp - Готово ьтатам верификации моделей - ть идент.классов в различных I nf1 статуса текущей" - Готово	ий: "Сумма знаний" - Готоі - Готово моделях" - Готово ешно завершены !!!	 =0
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из Шаг 11-й из	11: Пакетное распознавание в модел 11: Измерение достоверности модел ІКЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЫ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль 3 11: Создание формы: "Достоверноста 11: "Присвоение заданной модели: "В 11: "Присвоение заданной модели: В 11: "Присвоение за	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:— lostRasp - Готово ьтатам верификации моделей - ть идент.классов в различных I nf1 статуса текущей" - Готово	ий: "Сумма знаний" - Готого объемоделях" - Готово объемоделях" - Готово объемь	
Шаг 6-й из Шаг 7-й из КОНЕЦ ЦИ Шаг 8-й из Шаг 9-й из Шаг 10-й из Шаг 11-й из	11: Пакетное распознавание в модел 11: Измерение достоверности модел ІКЛА ПО ЧАСТНЫМ И ИНТЕГРАЛЬНЫ 11: Объединение БД DostRsp# в БД D 11: Печать сводной формы по резуль 3 11: Создание формы: "Достоверноста 11: "Присвоение заданной модели: "В 11: "Присвоение заданной модели: В 11: "Присвоение за	е текущей - Готово ли "INF7" - Готово ли: "Inf7" - Интегральный критер IM КРИТЕРИЯМ - ГОТОВО:— lostRasp - Готово ьтатам верификации моделей - ть идент.классов в различных I nf1 статуса текущей" - Готово	ий: "Сумма знаний" - Готого объемоделях" - Готово объемоделях" - Готово объемь	

Рисунок 4. Экранные формы режима синтеза и верификации статистических и системно-когнитивных моделей системы «Эйдос»

Обратим внимание на то, что на рисунке 4 в правом нижнем углу окна задана опция: «Расчеты проводить на графическом процессор (GPU)».

Из рисунка 4 видно, что весь процесс синтеза и верификации моделей занял 2 минуты 25 секунд. Отметим, что при синтезе и верификации моделей использовался графический процессор (GPU) видеокарты. На центральном процессоре (СРU) выполнение этих операций занимает значительно большее время (на некоторых задачах это происходит в десятки, сотни и даже тысячи раз дольше). Таким образом, неграфические вычисления на графических процессорах видеокарты делает возможной обработку больших объемов исходных данных за В процесс синтеза верификации время. И осуществляется также расчет 10 выходных форм, на что уходит более 99% времени исполнения.

Фрагменты самих созданных статистических и системно-когнитивных моделей (СК-модели) приведены на рисунках 5, 6, 7:

		COUNTRY ARGENTINA	COUNTRY AUSTRALIA	COUNTRY	COUNTRY	COUNTRY	COUNTRY	FRANCE	COUNTRY	GREECE	COUNTRY
1	DESCRIPTION-1200							1			
2	DESCRIPTION-1961										
3	DESCRIPTION-1970s										
4	DESCRIPTION-1999										
5	DESCRIPTION-2001										
6	DESCRIPTION-2003										
7	DESCRIPTION-2006										
8	DESCRIPTION-2011										
9	DESCRIPTION-2012							1			
10	DESCRIPTION-2013										
11	DESCRIPTION-2014										
12	DESCRIPTION-2015							4			
13	DESCRIPTION-2015e_"2										
14	DESCRIPTION-2016							5			
15	DESCRIPTION-2017							9			
16	DESCRIPTION-2018							3			
17	DESCRIPTION-2018e_"2025										
18	DESCRIPTION-2018e_"2028										
19	DESCRIPTION-2019							1			
20	DESCRIPTION-2020										
21	DESCRIPTION-2020e_"2022										
22	DESCRIPTION-2021										
23	DESCRIPTION-2022							1			

Рисунок 5. Матрица абсолютных частот (фрагмент)

	Наименование описательной											
		COUNTRY ARGENTINA	COUNTRY AUSTRALIA	COUNTRY AUSTRIA	COUNTRY BULGARIA	COUNTRY CANADA	COUNTRY	CROATIA	COUNTRY FRANCE	COUNTRY GERMANY	COUNTRY GREECE	
1	DESCRIPTION-1200								0.806			Т
2	DESCRIPTION-1961											
3	DESCRIPTION-1970s											
4	DESCRIPTION-1999											
5	DESCRIPTION-2001											\neg
6	DESCRIPTION-2003											
7	DESCRIPTION-2006											П
8	DESCRIPTION-2011											
9	DESCRIPTION-2012								0.806			
10	DESCRIPTION-2013											
11	DESCRIPTION-2014											
12	DESCRIPTION-2015								0.560			
13	DESCRIPTION-2015e_"2											
14	DESCRIPTION-2016								0.658			Т
15	DESCRIPTION-2017								0.718			
16	DESCRIPTION-2018								0.680			
17	DESCRIPTION-2018e_"2025											
18	DESCRIPTION-2018e_"2028											
19	DESCRIPTION-2019								0.198			П
20	DESCRIPTION-2020											П
21	DESCRIPTION-2020e_"2022											П
22	DESCRIPTION-2021											
23	DESCRIPTION-2022								0.806			\neg

Рисунок 6. Матрица информативности INF1 (фрагмент)

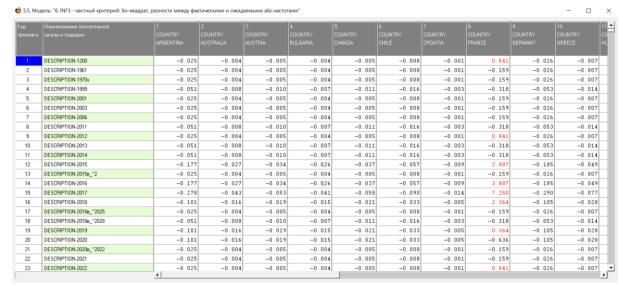


Рисунок 7. Модель INF3 (фрагмент)

Отметим, что в АСК-анализе и СК-моделях степень выраженности различных свойств объектов наблюдения рассматривается с единственной точки зрения: с точки зрения того, какое количество информации содержится в них о том, к каким обобщающим категориям (классам) будут принадлежать или не принадлежать эти объекты [9]. Поэтому не играет никакой роли в каких единицах измерения измеряются те или иные свойства объектов наблюдения, а также в каких единицах измеряются результаты влияния этих свойств, натуральных, в процентах или стоимостных [9]. Это и есть решение проблемы сопоставимости в АСК-анализе и системе «Эйдос», отличающее их от других интеллектуальных технологий.

Верификация статистических и системно-когнитивных моделей

Оценка достоверности моделей в системе «Эйдос» осуществляется путем решения задачи классификации объектов обучающей выборки по обобщенным образам классов и подсчета количества истинных положительных и отрицательных, а также ложных положительных и отрицательных решений по F-мере Ван Ризбергена, а также по критериям L1- L2-мерам проф.Е.В.Луценко, которые предложены для того, чтобы смягчить или полностью преодолеть некоторые недостатки F-меры [10]. В режиме 3.4 системы «Эйдос» изучается достоверность каждой частной модели в соответствии с этими мерами достоверности (рисунок 8).

Из рисунка 8 мы видим, что в данном интеллектуальном приложении по F-критерию Ван Ризбергена наиболее достоверной является СК-модель INF1 (и INF2) с интегральным критерием «Сумма знаний» (F=0,500 при максимуме 1,000), что является довольно слабым результатом, а по критерию L1 проф.Е.В.Луценко [10] наиболее достоверной также является

СК-модель INF3 с интегральным критерием «Сумма знаний» (L1=0,604 при максимуме 1,000), что является средним результатом.

							модели					уровней
		выборки								решений (STP)	решений (STN)	решени
1. ABS - частный критерий: количество встреч сочетаний: "клас	Корреляция абс.частот с обр	756	756	75	15801		0.046	1.000	0.087	317.603	0.462	
1. ABS - частный критерий; количество встреч сочетаний; "клас	Сумма абс.частот по признак	756	756	73	15803		0.046	1.000	0.087	322.009		59
2. PRC1 - частный критерий; усл. вероятность і-го признака сред	Корреляция усл.отн.частот с о	756	756	75	15801		0.046	1.000	0.087	317.609	0.462	266
2. PRC1 - частный критерий; усл. вероятность i-го признака сред	Сумма усл.отн.частот по приз	756	756	73	15803		0.046	1.000	0.087	133.764		173
 РВС2 - частный критерий; условная вероятность і-го признака 	Корреляция усл.отн.частот с о	756	756	75	15801		0.046	1.000	0.087	317.603	0.462	266
 PRC2 - частный критерий: условная вероятность і-го признака 	Сумма усл. отн. частот по приз	756	756	73	15803		0.046	1.000	0.087	136.620		167
4. INF1 - частный критерий: количество знаний по А.Харкевичу; в	Семантический резонанс зна	756	591	5534	10342	165	0.054	0.782	0.101	71.363	158.935	27
4. INF1 - частный критерий: количество знаний по А.Харкевичу; в	Сумма знаний	756	755	2564	13312	1	0.054	0.999	0.102	154.065	80.770	47
5. INF2 - частный критерий: количество знаний по А.Харкевичу; в	Семантический резонанс зна	756	602	5758	10118	154	0.056	0.796	0.105	71.092	162.088	25
5. INF2 - частный критерий: количество знаний по А.Харкевичу; в	Сумма знаний	756	755	2668	13208	1	0.054	0.999	0.103	152.699	81.596	43
6. INF3 - частный критерий: Хи-квадрат, разности между фактич	Семантический резонанс зна	756	740	8411	7465	16	0.090	0.979	0.165	189.238	497.521	47
6. INF3 - частный критерий: Хи-квадрат, разности между фактич	Сумма знаний	756	740	8411	7465	16	0.090	0.979	0.165	277.055	395.214	11
7. INF4 - частный критерий: ROI (Return On Investment); вероятно	Семантический резонанс зна	756	608	14570	1306	148	0.318	0.804	0.455	76.729	219.291	
7. INF4 - частный критерий: ROI (Return On Investment); вероятно	Сумма знаний	756	756	1174	14702		0.049	1.000	0.093	15.623	0.327	2
8. INF5 - частный критерий: ROI (Return On Investment); вероятно	Семантический резонанс зна	756	617	14599	1277	139	0.326	0.816	0.466	76.921	220.179	
3. INF5 - частный критерий: ROI (Return On Investment); вероятно	Сумма знаний	756	756	1251	14625		0.049	1.000	0.094	16.649	0.363	2
9. INF6 - частный критерий: разн.усл.и безусл.вероятностей; вер	Семантический резонанс зна	756	739	2460	13416	17	0.052	0.978	0.099	191.323	137.735	110
9. INF6 - частный критерий: разн.усл.и безусл.вероятностей; вер	Сумма знаний	756	740	1906	13970	16	0.050	0.979	0.096	58.803	26.870	76
10.INF7 - частный критерий: разн.усл.и безусл.вероятностей; ве	Семантический резонанс зна	756	741	2793	13083	15	0.054	0.980	0.102	195.947	141.606	102
10.INF7 - частный критерий: разн.усл.и безусл.вероятностей; ве	Сумма знаний	756	744	2091	13785	12	0.051	0.984	0.097	58.701	29.032	66
		4	•	•								

Рисунок 8. Экранная форма с информацией о достоверности моделей по F-критерию Ван Ризбергена и L1- и L2-критериям проф.Е.В.Луценко [10]

Это позволяет сделать обоснованные выводы о том, что:

- причинно-следственная Существует очень сильная зависимость между параметрами регионов динамического натяжения поверхностного на границе раздела технологий производства и оценкой за качество вина.
- 2. Эта причинно-следственная зависимость адекватно отражена в системно-когнитивных моделях INF1 и INF3.

На рисунке 9 приведено частотное распределения числа истинных и ложных положительных и отрицательных решений по результатам оценки идентификации вина на основе параметров технологии в СК-модели INF3 по данным обучающей выборки:

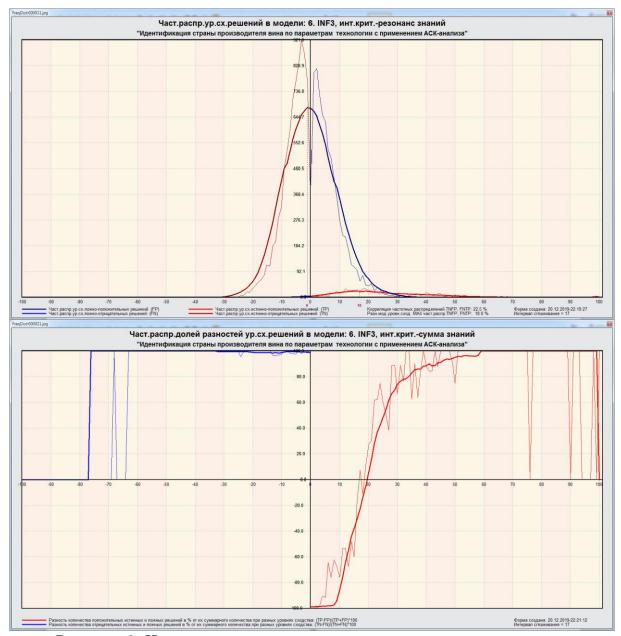


Рисунок 9. Частотные распределения числа истинных и ложных положительных и отрицательных решений и их разности в СК-модели Inf3

Из рисунков 9 видно, что при уровнях сходства более 20% истинных решений больше чем ложных.

На рисунке 10 приведен Help по режиму 3.4, в котором описаны меры достоверности моделей, применяемые в системе «Эйдос»:



Рисунок 10. Экранная форма с информацией о достоверности моделей по F-критерию Ван Ризбергена и L1- и L2-критериям проф.Е.В.Луценко [10]

Выбор наиболее достоверной модели и присвоение ей статуса текущей

В соответствии со схемой обработки данных, информации и знаний в системе «Эйдос» (рисунок 1), присвоим СК-модели INF1 статус текущей модели. Для этого запустим режим 5.6 с параметрами, приведенными на экранной форме (рисунок 11):

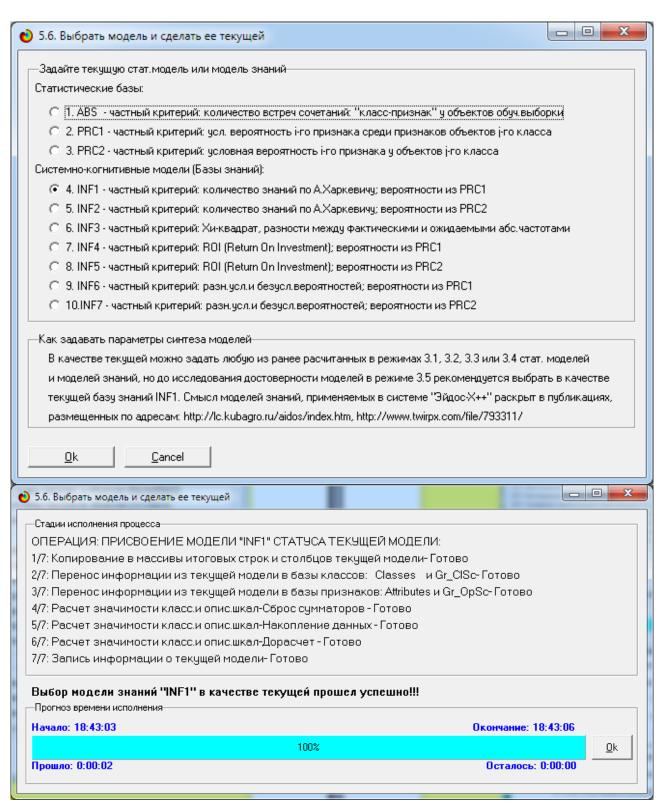


Рисунок 11. Экранные формы придания наиболее достоверной по F-критерию СК-модели Inf1 статуса текущей модели

Задача 4: решение различных задач в наиболее достоверной модели

Подзадача 4.1. Прогнозирование (диагностика, классификация, распознавание, идентификация)

Решим задачу системной идентификации, т.е. разницу в технологии производства вина на основе обучающей выборки в наиболее достоверной СК-модели INF1 на GPU (рисунок 12).

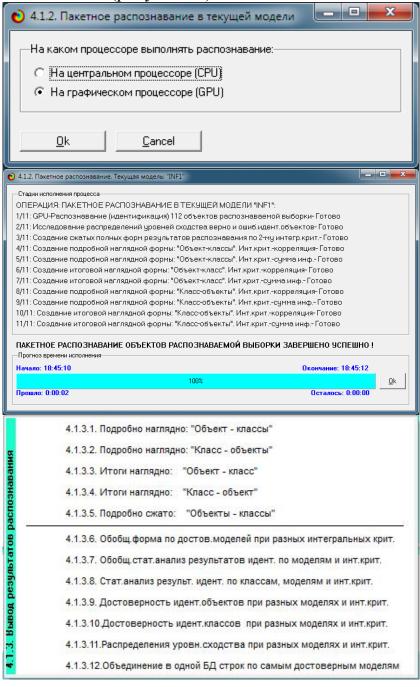
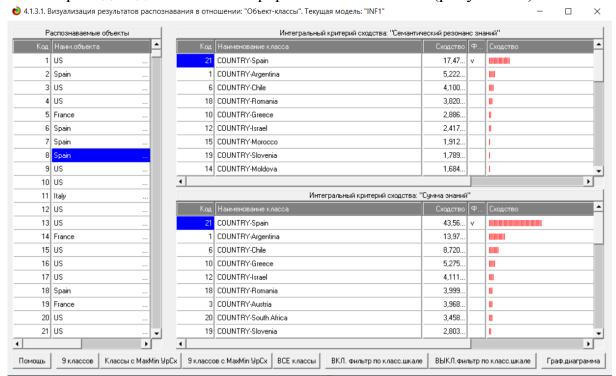



Рисунок 12. Экранные формы отображения процесса решения задачи системной идентифкации в текущей модели

Из рисунка 11 видно, что процесс идентификации занял 2 секунды.

Отметим, что 99,999% этого времени заняла не сама идентификация на GPU, а создание 10 выходных форм на основе результатов этого прогнозирования. Эти формы отражают результаты прогнозирования в различных разрезах и обобщениях:

Приведем две из этих 10 форм: 4.1.3.1 и 4.1.3.2 (рисунок 13).

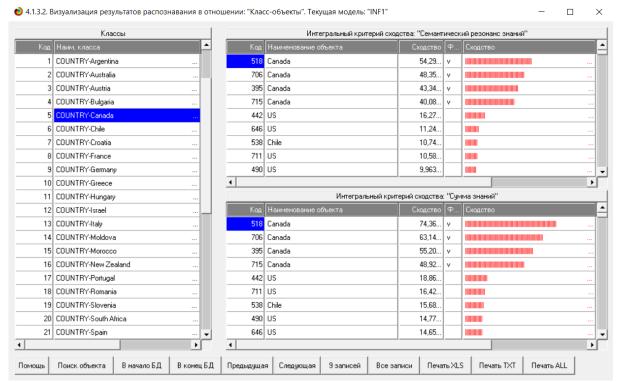
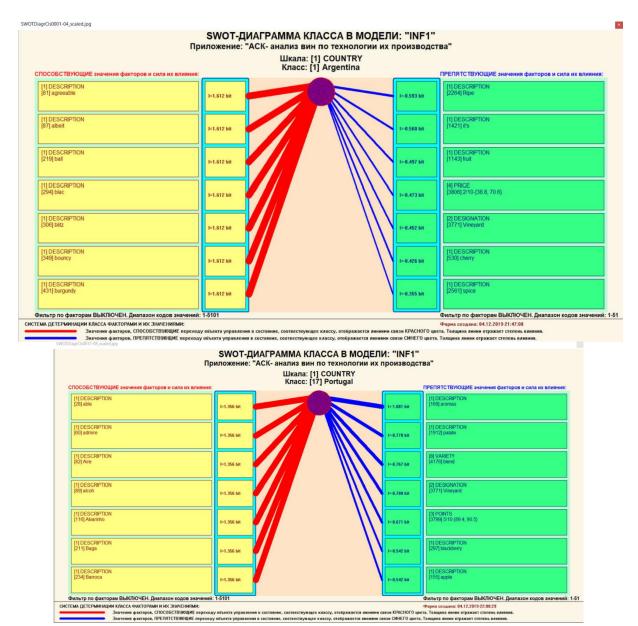
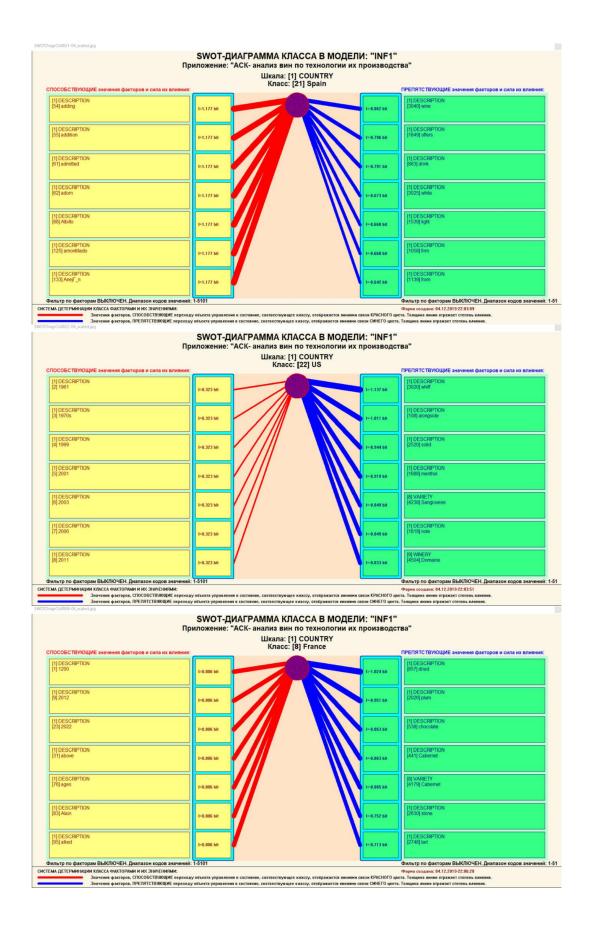
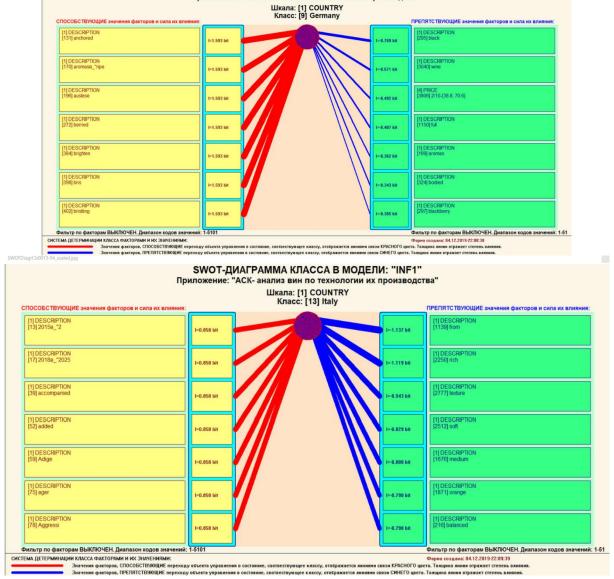


Рисунок 13. Выходные формы по результатам прогнозирования идентификация вина по технологии производства вина.

Символ «√» стоит против тех результатов идентификации, которые подтвердились на опыте, т.е. соответствуют факту. Из рисунка 13 видно, что результаты идентификации являются хорошими, естественно при учете информации из рисунка 9 о том, что достоверные прогнозы в данной модели имеют уровень сходства выше 61%, т.е. по сути результаты с более низки уровнем сходства надо просто игнорировать.


Подзадача 4.2. Поддержка принятия решений (SWOT-анализ)


При принятии решений определяется сила и направление влияния значений факторов на принадлежность состояний объекта моделирования к тем или иным классам, соответствующим различным будущим состояниям. По сути это решение задачи SWOT-анализа [11].


Применительно к задаче, решаемой в данной работе, SWOT-анализ показывает степень влияния различных значений, параметров технологий производства вина и их степень влияния друг на друга.

В системе «Эйдос» в режиме 4.4.8 поддерживается решение этой задачи. При этом выявляется система детерминации заданного класса, т.е. система значений факторов, обуславливающих переход объекта моделирования и управления в состояние, соответствующее данному классу, а также препятствующих этому переходу.

На рисунках 14 приведены SWOT-диаграммы наглядно отражающие силу и направление влияния различных значений параметров технологий производства фирменных марок вина.

SWOT-ДИАГРАММА КЛАССА В МОДЕЛИ: "INF1"

Рисунок 14. SWOT-диаграммы детерминации качества вина

Эти SWOT-диаграммы наглядно отражают силу и влияние различных значений, параметров технологий производства вина.

Отметим также, что система «Эйдос» обеспечивала решение этой *всегда*, т.е. даже в самых ранних DOS-версиях и в реализациях системы «Эйдос» на других языках и типах компьютеров. Например, первый акт внедрения системы «Эйдос», где об этом упоминается в явном виде, датируется 1987 годом, а первый подобный расчет относится к 1981 году.

утверждаю УТВЕРИДАЮ Заведующий Краснодарским сектором ИСИ жа СССР, к.ф.н. А. А. Хагуров 187г. лиректор Северо-данказов. Вниц "АнуС-агроресурси", к.э.н. Э.М. Трахов Северо-Кавказского филиала Настоящий акт составлен комиссией в составе: Кириченко М.М., Ляшко Г.А., Самсонов Г.А., Коренец В.И., Луценко Е.В. в том, что в соответствии с договором о научно-техническом сотрудничестве между Северо-Кавказским филиалом ВНИЦ "АИУС-агроресурсы" и Краснодарским сектором Института социологических исследований АН СССР Северо-Кавказским филиалом ВНИЦ "АИУС-агроресурсы" выполнены следующие ра-- осуществлена постановка задачи: "Обработка на ЭВМ социологических анкет Крайагропрома; разработаны математическая модель и программное обеспечение под-системы распознавания образов, позволяющие решать данную задачу в среде персональной технологической системы ВЕГА-М; - на профессиональной персональной ЭВМ "Искра-226" осуществлены расчёты по задаче в объёме: Входная информация составила 425 анкет по 9-ти предприятиям. Выходная информация — 4 вида выходных форм объёмом 90 листов формата А3 и 20 листов формата А4 содержит: - процентное распределение ответов в разрезе по социальным типам процентное распределение ответов в разрезе по социальных типах корреспондентов;
 распределение информативностей признаков (в битах) для распознавания социальных типов корреспондентов;
 позитивные и негативные информационные портреты 30-ти социальных типов на языке 2I2 признаков;
 обобщённая характеристика информативности признаков для выбора такого минимального набора признаков, который содержит максимум информации о распознаваемых объектах (оптимизация анкет). Работы выполнены на высоком научно-методическом уровне и в срок. От СКФ ВНИЦ "АИУС-агроресурсы": OT MCM AH CCCP: Зав. отделом аэрокосмических и Мл. научный сотрудник тематических изнеканий №4, к.э.н. Нашений Г.А. Самсонов Г.А.Самсонов 1987г. м. М. Кириченко 1987г. Главний конструктор проекта Мл. научный сотрудник Лашко Г. А. Ляшко 13.05 1987г. Главный конструктор проекта Е.В. Луценко 1987г.

Но тогда SWOT-диаграммы назывались позитивным и негативным информационными портретами классов.

Информация о системе значений факторов, обуславливающих переход объекта моделирования в различные будущие состояния, соответствующие классам, может быть приведена не только в диаграммах, показанных на рисунках 14, но и во многих других табличных и графических формах, которые в данной работе не приводятся только из-за ограниченности ее объема. В частности в этих формах может быть выведена значительно более полная информация (в т.ч. вообще вся имеющая в модели). Подобная подробная информация содержится в базах данных, расположенных по пути: с:\Aidos-

X\AID_DATA\A0000001\System\SWOTCls###Inf1.DBF, где: «####» – код класса с ведущими нулями. Эти базы открываются в MS Excel.

На рисунке 15 приведены примеры нескольких инвертированных SWOT-диаграмм, отражающих силу и влияния различных значений параметров технологии производства вина распределением по странам.

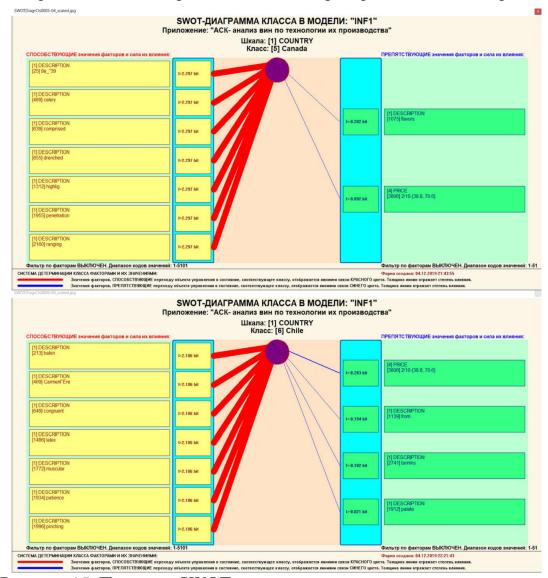


Рисунок 15. Примеры SWOT-диаграмм, отражающих силу и влияния конкретного значения параметра технологий производства вина на его качество.

В заключение отметим, что SWOT-анализ является широко известным и общепризнанным метод стратегического планирования. Однако это не мешает тому, что он подвергается критике, часто вполне справедливой, обоснованной и хорошо аргументированной. В результате критического рассмотрения SWOT-анализа выявлено довольно много его слабых сторон (недостатков), источником которых чаще всего является необходимость привлечения экспертов, в частности для оценки силы и

направления влияния факторов. Ясно, что эксперты это делают неформализуемым путем (интуитивно), на основе своего опыта и профессиональной компетенции. Но возможности экспертов имеют свои ограничения и часто по различным причинам они не могут и не хотят это сделать. Таким образом, возникает проблема проведения SWOT-анализа без привлечения экспертов. Эта проблема может решаться путем автоматизации функций экспертов, т.е. путем измерения силы и направления влияния факторов непосредственно на основе эмпирических данных. Подобная технология разработана давно, ей уже более 30 лет, но к сожалению она сравнительно малоизвестна — это интеллектуальная система «Эйдос» [11, 18, 19].

Подзадача 4.3. Исследование моделируемой предметной области путем исследования ее модели

Если модель предметной области достоверна, то исследование модели можно считать исследованием самого моделируемого объекта, т.е. результаты исследования модели корректно относить к самому объекту моделирования, «переносить на него».

В системе «Эйдос» есть довольно много возможностей для такого исследования, но в данной работе из-за ограничений на ее объем мы рассмотрим лишь результаты кластерно-конструктивного анализа классов и признаков (когнитивные диаграммы и дендрограммы), а также нелокальные нейроны, нелокальные нейронные сети, 3d-интегральные когнитивные карты и когнитивные функции.

4.3.1. Когнитивные диаграммы классов

Эти диаграммы отражают сходство/различие классов. Мы получаем их в режимах 4.2.2.1 и 4.2.2.2 (рисунок 16).

Отметим также, что на когнитивной диаграмме, приведенной на рисунке 16, показаны количественные оценки сходства/различия таких важнейших показателей различих марок вина по технологии их производства. Важно, что эти результаты сравнения получены с применением системно-когнитивной модели, созданной непосредственно на основе эмпирических данных, а не как традиционно делается на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

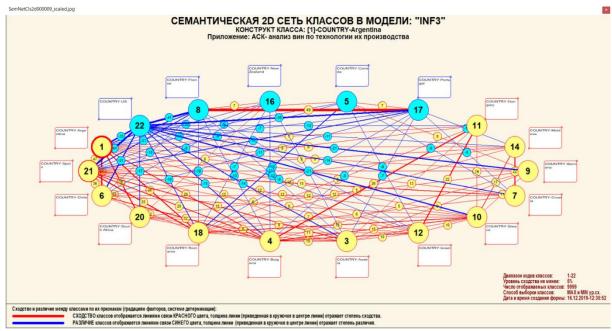


Рисунок 16. Когнитивная диаграмма классов, отражающая сходство/различие различных марок вина по технологии их производства.

В системе «Эйлос» есть возможность управлять параметрами формирования и вывода изображения, приведенного на рисунке 16. Для этого используется диалоговое окно, приведенное на рисунке 17.

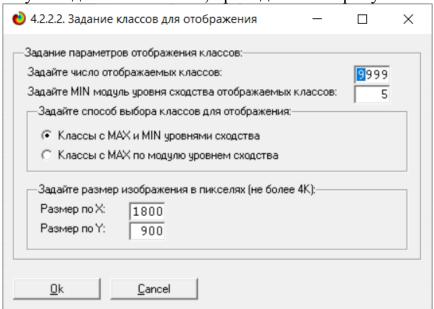


Рисунок 17. Диалоговое окно управления параметрами формирования и вывода изображения когнитивной диаграммы классов

4.3.2. Агломеративная когнитивная кластеризация классов

Информация о сходстве/различии классов, содержащаяся в матрице сходства, может быть визуализирована не только в форме, когнитивных

диаграмм, пример которой приведен на рисунке 16, но и в форме агломеративных дендрограмм, полученных в результате *когнитивной кластеризации* [5] (рисунок 18):

Рисунок 18. Дендрограмма когнитивной агломеративной кластеризации, отражающая сходство/различие различных марок вина по технологии их производства.

Из рисунков 16 и 18 мы видим, что некоторые показатели качества различных марок вина по технологии их прозводства, и, следовательно, корректно ставить задачу их одновременного достижения, а другие по системе значений этих параметров сильно отличаются, и, следовательно, являются взаимоисключающими, т.е. альтернативными и цель их одновременного достижения является некорректной и недостижимой, т.к. для достижения одного из альтернативных результатов необходимы одни значения параметров производства, а для достижения другого — совершенно другие, которые не могут наблюдаться одновременно с первыми.

Из дендрограммы когнитивной агломеративной кластеризации классов, приведенной на рисунке 18, мы видим также, что все классы по качеству молока образуют два противоположных кластера, являющихся полюсами конструкта, по системе значений обуславливающих значениям параметрами производства.

В верхнем кластере объединены (за редким исключением) результаты с очень высокими, высокими и средними значениями показателей качества вина, а в нижнем – с очень низкими показателями. Из этого, можно сделать, вывод о том, что высокие и очень высокие показатели качества производства вина по содержанию их технологий

обычно наблюдаются в одних и тех же пробах и достижимы одновременно, как и очень низкие, низкие и средние показатели качества.

Отметим, однако, что в наших исходных данных нет информации о людях, которые пробовали вино. Авторы могут предположить, что высокие технологии отрицательно сказываются на качестве молока, а низкие положительно

Отметим, что аналогичная картина наблюдается не только в виноделии, но в птицеводстве, и в растениеводстве, причем не только по овощным, но и по фруктовым, и по зерновым культурам. При этом финансово-экономические показатели ПО системе детерминирующих факторов обычно c ИХ сходны высокими количественными результатами и низкими качественными, т.е. высокие прибыль и рентабельность обуславливаются в основном большим количеством продукции, а не ее высоким качеством.

На рисунке 19 мы видим график изменения межкластерных расстояний:

Рисунок 19. График изменения межкластерных расстояний

4.3.3. Когнитивные диаграммы значений факторов

Эти диаграммы отражают сходство/различие значений параметров технологий производства по их смыслу, т.е. по содержащейся в них информации о качестве вина. Эти диаграммы мы получаем в режимах 4.3.2.1 и 4.3.2.2 (рисунок 20).

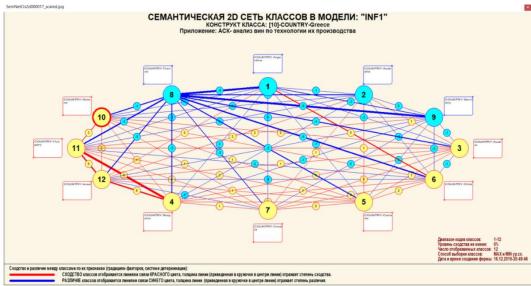


Рисунок 20. сходство/различие значений параметров технологий производства винных марок.

Из рисунка 20 видно, что все значения факторов образуют два крупных кластера, противоположных по их смыслу. Эти кластеры образуют полюса конструкта.

Отметим, что на когнитивной диаграмме, приведенной на рисунке 20, показаны *количественные* оценки сходства/различия значений факторов, полученные с применением системно-когнитивной модели, созданной *непосредственно на основе эмпирических данных*, а не как традиционно делается на основе экспертных оценок неформализуемым путем на основе опыта, интуиции и профессиональной компетенции.

Диаграмма, приведенная на рисунке 20, получена при параметрах, приведенных на рисунке 21.

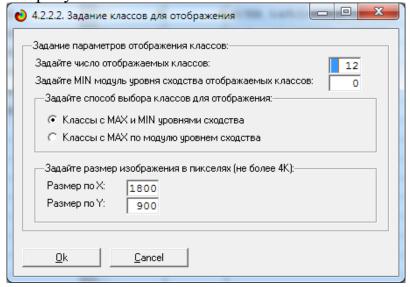


Рисунок 21. Параметры отображения когнитивной диаграммы, приведенной на рисунке 20

4.3.4. Агломеративная когнитивная кластеризация значений факторов

На рисунке 22 приведена агломеративная дендрограмма когнитивной кластеризации значений факторов и график изменения межкластерных расстояний, полученные на основе той же матрицы сходства признаков по их смыслу, что и в когнитивных диаграммах, пример которой приведен на рисунке 20.

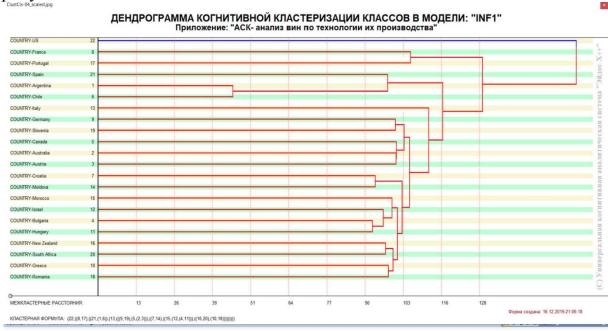


Рисунок 22. Дендрограмма агломеративной когнитивной кластеризации значений параметров технологий по их смыслу, т.е. по технологиям производства различных марок вина.

Из дендрограммы на рисунке 22 мы видим, что все значения факторов образуют 2 четко выраженных кластера, объединенных в полюса конструкта (показаны синими и красным цветами).

Хорошо видна группировка значений параметров технологий по их смыслу, т.е. по содержащейся в них информации о качестве коровьего молока. Значения факторов на полюсах конструкта факторов (рисунок 22) обуславливают переход объекта моделирования в состояния, соответствующие классам, представленным на полюсах конструкта классов (рисунки 18 и 20).

На рисунке 23 приведен график межклассовых расстояний, значений технологий производства вин.

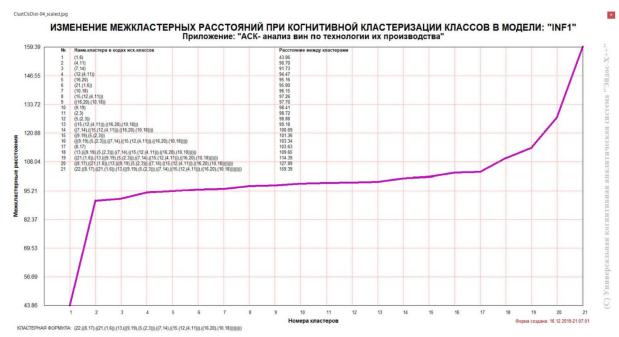


Рисунок 23. График изменения межкластерных расстояний при когнитивной кластеризации значений факторов

4.3.5. Нелокальные нейроны и нелокальные нейронные сети

На рисунке 24 приведен пример нелокального нейрона, а на рисунке 25 и фрагмент одного слоя нелокальной нейронной сети:

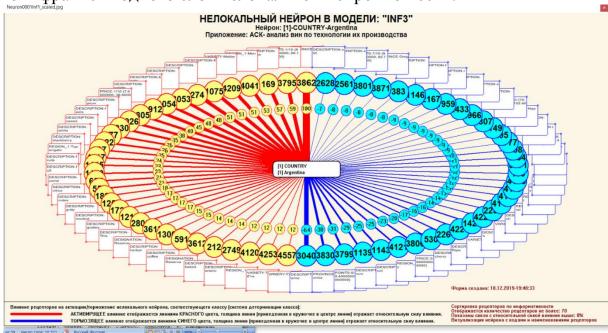


Рисунок 24. Пример нелокального нейрона, отражающего силу и направление влияния значений параметров технологий на лучшую марку вина.

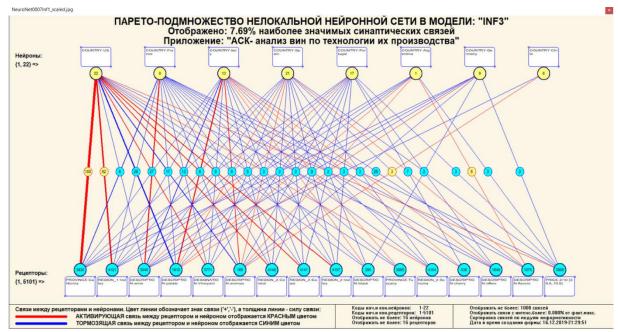


Рисунок 25. Один слой нелокальной нейронной сети, отражающий силу и направление влияния значений параметров технологий на качество производства вина

В приведенном фрагменте слоя нейронной сети нейроны соответствуют показателям качества производства вина, а технологии — значения параметров производства. Нейроны расположены слева на право в порядке убывания силы детерминации, т.е. слева находятся результаты, наиболее жестко обусловленные обуславливающими их значениями факторами, а с права — менее жестко обусловленные.

Модель знаний системы «Эйдос» относится к нечетким декларативным гибридным моделям и объединяет в себе некоторые особенности нейросетевой [13, 20] и фреймовой моделей представления знаний [20]. Классы в этой модели соответствуют нейронам и фреймам, а признаки рецепторам и шпациям (описательные шкалы – слотам).

От фреймовой модели представления знаний модель системы «Эйдос» отличается своей эффективной и простой программной реализацией, полученной за счет того, что разные фреймы отличаются друг от друга не набором слотов и шпаций, а лишь информацией в них. Поэтому в системе «Эйдос» при увеличении числа фреймов само количество баз данных не увеличивается, а увеличивается лишь их размерность.

От нейросетевой модели представления знаний модель системы «Эйдос» отличается тем, что [13, 20]:

1) весовые коэффициенты на рецепторах не подбираются итерационным методом обратного распространения ошибки, а считаются

прямым счетом на основе хорошо теоретически обоснованной модели, основанной на теории информации (это напоминает байесовские сети);

- 2) весовые коэффициенты имеют хорошо теоретически обоснованную содержательную интерпретацию, основанную на теории информации;
- 3) нейросеть является нелокальной, как сейчас говорят «полносвязной».

4.3.6. Сила и направление влияния значений параметров производственных технологий вин на место их изготовления

На рисунках 5, 6, 7 приведены фрагменты некоторых статистических и системно-когнитивных моделей, отражающих моделируемую предметную область.

Строки матриц моделей соответствуют значениям факторов, т.е. значениям параметров технологий производств (градации описательных шкал).

Колонки матриц моделей соответствуют различным классам, отражающим различные страны производящий вино во своему рецепту(градации классификационных шкал).

Числовые значения в ячейках матриц моделей, находящихся на пересечении строк и колонок, отражают направление (знак) и силу влияния конкретного значения параметра рецепта, соответствующего сроке, на конкретное значение показателя качества вина, соответствующего колонке.

Если какое-то значение параметра технологии производства слабо влияет на качество вина, то в соответствующей строке матрицы модели будут малые по модулю значения разных знаков, если же влияние сильное – то и значения будут большие по модулю разных знаков.

Если значение показателя технологий способствует получению некоторого определенного показателя качества вина, то в соответствующей этому результату ячейке матрицы модели будут положительные значения, если же понижает — то и значения будут отрицательные.

Из этого следует, что суммарную силу влияния того или иного значения параметра технологий производства на показатели качества вина можно количественно оценивать *степенью вариабельности значений* в строке матрицы модели, соответствующей этому значению параметра технологий.

Существует много мер вариабельности значений: это и среднее модулей отклонения от среднего, и дисперсия, и среднеквадратичное отклонение и другие. В АСК-анализе и системе «Эйдос» для этой цели принято использовать среднеквадратичное отклонение. Численно оно

равно стандартному отклонению и вычисляется по той же формуле, но мы предпочитаем не использовать термин «стандартное отклонение», т.к. он предполагает нормальность распределения исследуемых последовательностей чисел, а значит и проверку соответствующих статистических гипотез.

Самая правая колонка в матрицах моделей на рисунках 5, 6, 7 содержит количественную оценку вариабельности значений строки модели (среднеквадратичное отклонение), которая и представляет собой ценность значения параметра технолгий, соответствующего строке, для решения задачи квалиметрии и других задач, рассмотренных в работе.

Если рассортировать матрицу модели по этой самой правой колонке в порядке убывания, а потом просуммировать значения в ней нарастающим итогом, то получим логистическую Парето-кривую, отражающую зависимость ценности модели от числа наиболее ценных признаков в ней (рисунок 32, таблица 7).

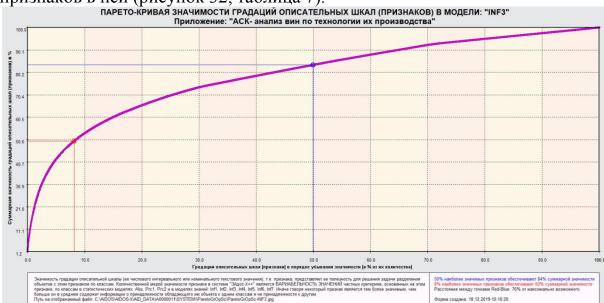


Рисунок 26. Парето-кривая значимости градаций описательных шкал

Таблица 7 — Парето-таблица значимости градаций описательных шкал, т.е. сила влияния значений параметров технологий производства на сходства качества вина в СК-модели INF3 с 3 адаптивными

градациями(фрагмент).

		тридили (фри	· · · · ·		Значимость
				Значи-	нарастающих
Номер	Код	Наименование признаков	Код шкалы	Мость, %	итогом,%
1	3830	PROVINCE-California	5	1,233	1,233
2	1912	DESCRIPTION-palate	1	0,786	2,019
3	3040	DESCRIPTION-wine	1	0,768	2,787
4	4121	REGION_1-Valley	6	0,766	3,553
5	169	DESCRIPTION-aromas	1	0,672	4,225
6	3771	DESIGNATION-Vineyard	2	0,473	4,697
7	4140	REGION_2-Central	7	0,426	5,123
8	4141	REGION_2-Coast	7	0,416	5,539
9	863	DESCRIPTION-drink	1	0,409	5,948

	_		_		
10	4157	REGION_2-Valley	7	0,396	6,344
11	1145	DESCRIPTION-fruits	1	0,389	6,733
12	1075	DESCRIPTION-flavors	1	0,387	7,120
13	530	DESCRIPTION-cherry	1	0,377	7,497
14	274	DESCRIPTION-berry	1	0,374	7,870
15	295	DESCRIPTION-black	1	0,373	8,243
16	3895	PROVINCE-Tuscany	5	0,360	8,603
17	1849	DESCRIPTION-offers	1	0,338	8,941
18	4154	REGION_2-Sonoma	7	0,338	9,279
19	4176	VARIETY-blend	8	0,337	9,616
20	1139	DESCRIPTION-from	1	0,332	9,949
21	108	DESCRIPTION-alongside	1	0,323	10,271
22	4440	WINERY-ChΓÿteau	9	0,320	10,591
23	3874	PROVINCE-Piedmont	5	0,317	10,909
24	4229	VARIETY-Pinot	8	0,315	11,224
25	3806	PRICE-2/10-{38.8000000, 70.6000000}	4	0,315	11,539
26	4224	VARIETY-Noir	8	0,312	11,851
27	4504	WINERY-Domaine	9	0,312	12,162
28	2800	DESCRIPTION-This	1	0,311	12,473
29	4221	VARIETY-Nebbiolo	8	0,300	12,773
30	3805	PRICE-1/10-{7.0000000, 38.8000000}	4	0,299	13,072
31	4149	REGION_2-Napa	7	0,294	13,365
32	4179	VARIETY-Cabernet	8	0,292	13,658
33	44	DESCRIPTION-acidity	1	0,290	13,948
34	3889	PROVINCE-Spain	5	0,285	14,233
35	3053	DESCRIPTION-with	1	0,283	14,516
36	2561	DESCRIPTION-spice	1	0,283	14,799
37	2741	DESCRIPTION-tannins	1	0,281	15,080
38	2782	DESCRIPTION-that	1	0,270	15,350
39	3871	PROVINCE-Oregon	5	0,264	15,614
40	1054	DESCRIPTION-finish	1	0,258	15,872
41	2026	DESCRIPTION-plum	1	0,254	16,126
42	3846	PROVINCE-France	5	0,253	16,379
43	4239	VARIETY-Sauvignon	8	0,248	16,627
44	3869	PROVINCE-Northern	5	0,248	16,875
45	2264	DESCRIPTION-Ripe	1	0,246	17,121
46	3888	PROVINCE-Southwest	5	0,244	17,365
47	4230	VARIETY-Portuguese	8	0,234	17,599
48	3928	REGION 1-Barolo	6	0,232	17,831
49	4183	VARIETY-Chardonnay	8	0,230	18,061
50	3058	DESCRIPTION-wood	1	0,228	18,288
51	4238	VARIETY-Sangiovese	8	0,226	18,514
52	1441	DESCRIPTION-Juicy	1	0,226	18,740
53	4246	VARIETY-style	8	0,224	18,963
54	1534	DESCRIPTION-licorice	1	0,219	19,183
55	2250	DESCRIPTION-rich	1	0,218	19,401
56	3022	DESCRIPTION-while	1	0,217	19,617
57	1146	DESCRIPTION-fruity	1	0,216	19,834
58	2628	DESCRIPTION-still	1	0,213	20,046
59	3824	PROVINCE-Bordeaux	5	0,210	20,257
60	4159	REGION 2-Willamette	7	0,210	20,467
61	3020	DESCRIPTION-whiff	1	0,206	20,673
62	4177	VARIETY-Bordeaux	8	0,203	20,876
63	1867	DESCRIPTION-opens	1	0,201	21,077
64	1058	DESCRIPTION-firm	1	0,198	21,274
65	1959	DESCRIPTION-pepper	1	0,196	21,470
66	1661	DESCRIPTION-mature	1	0,193	21,663
67	784	DESCRIPTION-delivers	1	0,189	21,853
68	3897	PROVINCE-Valley	5	0,186	22,039
69	2650	DESCRIPTION-structure	1	0,183	22,222
70	4236	VARIETY-Riesling	8	0,183	22,403
70	4056	REGION_1-Napa	6	0,181	22,584
72	3940	REGION_1-Napa REGION_1-Brunello	6	0,181	22,764
73	4043	REGION_1-Bruffelio	6	0,180	22,764
74	2966	DESCRIPTION-vineyard	1	0,180	23,123
75	2167	DESCRIPTION-vineyard DESCRIPTION-raspberry	1	0,179	23,301
, ,	210/	DESCRIPTION TOSPUCTTY	1 1	0,113	2J,JU1

76	1495	DESCRIPTION-lead	1	0,177	23,478
77	324	DESCRIPTION-bodied	1	0,176	23,654
78	721	DESCRIPTION-crushed	1	0,176	23,831
79	4250	VARIETY-Tempranillo	8	0,176	24,007
80	1539	DESCRIPTION-light	1	0,174	24,181
81	1819	DESCRIPTION-note	1	0,174	24,355
82	3799	POINTS-5/10-{89.4000000, 90.5000000}	3	0,173	24,528
83	3088	DESCRIPTION-young	1	0,167	24,694

Из рисунка 32 и таблицы 7 видно, что 50% наиболее ценных для решения задачи квалиметрии вина по технологии производства обуславливают 84% суммарной ценности, а 50% суммарной ценности обеспечиваются 29% наиболее ценных значений ДПН.

Обращает на себя внимание, что наиболее ценным является высокое значение параметра под номером 1, а наименее ценным — высокое значение параметра под номером 83,

Из таблицы 7 видно, что наиболее сильное влияние на показатели качества вина оказывают значения параметров их технологий:

PROVINCE-California 5 (1,2331,233)
 DESCRIPTION-palate 1 (0,7862,019)
 DESCRIPTION-wine 1 (0,7682,787)
 REGION_1-Valley 6 (0,7663,553)
 DESCRIPTION-aromas 1 (0,6724,225)

Ценность же параметра технологий производства вина (всей описательной шкалы или фактора), для решения этих задач можно количественно оценивать как среднее от ценности значений этого параметра (таблица 8).

Таблица 8 – Парето-таблица значимости описательных шкал, т.е. сила влияния параметров производственных технологий на качество вина в СК-модели INF1 с 3 адаптивными градациями

			о	1211111	рыдыш
					Значимость
				Значи-	нарастающих
Номер	Код	Наименование признаков	Код шкалы	мость, %	итогом,%
1	3830	PROVINCE-California	5	1,233	1,233
2	1912	DESCRIPTION-palate	1	0,786	2,019
3	3040	DESCRIPTION-wine	1	0,768	2,787
4	4121	REGION_1-Valley	6	0,766	3,553
5	169	DESCRIPTION-aromas	1	0,672	4,225
6	3771	DESIGNATION-Vineyard	2	0,473	4,697

Из таблицы 8 видно, что наиболее сильное влияние на показатели качества вина оказывают параметры 5 и 2 коды наименования.

4.3.9. Степень детерминированности качества вина значениями параметров производственных технологий

Степень детерминированности (обусловленности) класса в системе «Эйдос» количественно оценивается *степенью вариабельности значений* факторов (градаций описательных шкал) в колонке матрицы модели, соответствующей данному классу (таблица 9).

В данной работе у нас классами являются показатели качества производящего вина, а значениями градаций описательных шкал — значения параметров технологий производства.

На рисунке 33 мы видим Парето-кривую степени детерминированности классов значениями параметров технологий производства нарастающим итогом.

Рисунок 27. Парето-кривая степени детерминированности классов

Таблица 9 – Парето-таблица степеней детерминированности (обусловленности) классов (показателей качества коровьего молока) в СК-модели INF1 с 3 адаптивными интервалами

Значимость Значинарастающих Nο Код Наименование мость, % итогом,% 1 22 COUNTRY-US 25,903 25,903 2 44,620 13 **COUNTRY-Italy** 18,717 3 8 **COUNTRY-France** 16,526 61,145 4 21 **COUNTRY-Spain** 8,950 70,095 5 17 COUNTRY-Portugal 6,574 76,669 6 9 COUNTRY-Germany 4,369 81,039 7 COUNTRY-Argentina 4,137 85,176 1 8 20 **COUNTRY-South Africa** 1,947 87,123 9 COUNTRY-Chile 1,789 88,912 6 90,474 10 10 **COUNTRY-Greece** 1,562 11 5 COUNTRY-Canada 1,139 91,613 12 3 **COUNTRY-Austria** 1,131 92,743 13 16 **COUNTRY-New Zealand** 1,088 93,831

14	4	COUNTRY-Bulgaria	1,039	94,870
15	2	COUNTRY-Australia	1,028	95,898
16	12	COUNTRY-Israel	0,919	96,817
17	11	COUNTRY-Hungary	0,702	97,519
18	7	COUNTRY-Croatia	0,544	98,063
19	14	COUNTRY-Moldova	0,514	98,577
20	15	COUNTRY-Morocco	0,501	99,078
21	19	COUNTRY-Slovenia	0,489	99,568
22	18	COUNTRY-Romania	0,432	100,000

Из таблицы 9 мы видим, что значения параметров технологии изготовления наиболее рассматриваемым является качество и вкус вина. Высокое и низкое качество вина детерминируется в два раза слабее, чем страны в которых его производят

Чем выше степень детерминированности значения показателя качества вина значениями параметров технологий производства, тем легче определить это качество по параметрам.

Степень детерминированности (обусловленности) всей классификационной шкалы является средним от степени детерминированности ее градаций, т.е. классов (таблица 10).

Таблица 10 – Классификационные шкалы, ранжированные по убыванию средней степени детерминированности их градаций в СК-модели INF1

NU	NUM_	KOD_	NAME_	N_GR	KODGR	KODGR_	ZNAC	ZN_C	ZNACH	ZN_PR
М	PRC	CLSC	CLSC	CLSC	_MIN	MAX	H_CS	SNIT	_PRC	CNIT
1	100,0	1	COUNT	22	1	22	0.210	0,210	100,00	100,00
1	00	1	RY	22	1	22	0,210	0,210	0	0

Из таблицы 10 видно, что наиболее высокую степень детерминированности обуславливающими их факторами имеет сохранение качества технологий производства элитного вина в нескольких странах, а там где его производят в большем количестве, не значит, что оно хорошее.

Это значит, что качество вина зависит от технологий по которым оно производится.

4.3.10. Устойчивость производственных технологий вина в разных странах

Устойчивость зависимостей показателей качества изготовленного вина от обуславливающих их значений параметров их технологий подразумевает *непрерывность* и *монотонность* этих зависимостей.

Непрерывность зависимостей показателей качества вина от обуславливающих их значений параметров технологий производства означает, что малые изменения значений этих параметров детерминируют

малые изменения показателей качества лучшего вина, а более значительные изменения значения параметров технологий производства обуславливают и более существенные изменения показателей качества, т.е. степень изменения значений показателей производственных технологий вина, соответствует степени изменения, обуславливающих их параметров их производственных технологий.

Если непрерывность нарушается, то незначительное изменения значения технологий производства может привести как к малым, так и к значительным изменениям значений показателей качества вина, а большие изменения значений параметров приготовления могут оказать как сильное, так и незначительное влияние на изменение значений показателей качества.

Если в системе управления *нарушается непрерывность управления*, то это воспринимается как ее поломка, неисправность и непригодность для выполнения своей функции.

<u>Например</u>, если нарушается непрерывность зависимости тяги двигателя машины от степени нажатия педали газа, то при плавном увеличении газа машина будет не плавно разгоняться, а начнет дергаться и может вообще заглохнуть, как это бывает у новичков, которые еще не научились правильно трогаться с места.

Монотонность зависимостей показателей качества вина от значений параметров их технологий производства означает, что:

- если параметры технологий *способствуют* повышению качества вина, то увеличение значения параметра технологий приводит к повышению показателя качества вина,
- если же параметр технологии производства *препятствует* повышению качества вина, то увеличение значения параметра технологии приводит к понижению показателя качества вина, т.е. между параметром изготовления и показателем качества вина наблюдается обратнопропорциональная зависимость.

Монотонность управления характерна для **линейных** систем управления и нарушается в **нелинейных** системах управления [21]. Система управления является линейной, если для нее выполняется **принцип суперпозиции**, т.е. результат совместного действия на нее совокупности факторов является **суммой** действий каждого из них по отдельности [21].

Если в системе управления *нарушается монотонность управления*, то это может приводить к тому, что при увеличении значения фактора результат может сначала увеличиваться практически пропорционально степени увеличения этого значения, затем *скорость* увеличения результата начинает уменьшаться и затем стабилизируется, а при дальнейшем увеличении значения фактора результат начинает

уменьшаться вплоть до нуля или даже отрицательных значений (например, вместо прибыли получены убытки). Могут наблюдаться и другие нелинейные зависимости значения функции от значения аргумента.

По сути, при нарушении монотонности управления меняется <u>знак</u> первой производной результата управления по значению фактора, нарушается знакоопределенность этой первой производной³. Понятно, что немонотонные функции не являются непрерывными.

Принципиальный вид кривой влияния интенсивности фактора на результат в нелинейной системе при этом получается очень похожий у всех факторов (для примера на рисунке 34 показаны 3 из них):

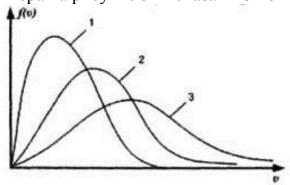


Рисунок 28. Принципиальный вид кривой влияния интенсивности фактора на нелинейный объект управления⁴.

Например, если по оси X показать интенсивность полива какой-либо конкретной культуры, а по Y урожайность, то график на рисунке 31 можно интерпретировать таким образом, что при полном отсутствии полива урожайность будет минимальной, при его увеличении урожайность будет возрастать сначала быстро, потом все медленнее, затем достигнет максимума, а потом при дальнейшем увеличении полива она начнет уменьшаться пока опять не достигнет минимума (нуля, если культура не рис), когда все поле превратится в озеро.

Принципиально важно, что один и тот же полив будет действовать по-разному при условии одновременного действия других факторов, причем при этом смещается точка оптимума, т.е. при действии других факторов оптимальный полив становится другой, в чем и проявляется нелинейность системы и взаимодействие факторов, нарушение для них принципа суперпозиции (кривые 1, 2, 3 на рисунке 34).

Нарушение монотонности управления может приводить к *различным видам зависимостей* результатов от значений управляющих

⁴ Источник рисунка: http://san-of-war2.narod.ru/fiziks/fiziks_image481.jpg На самом деле на рисунке показано распределение Максвелла молекул газа по скоростям при разных температурах. Удивительно, но подобный вид имеет влияние интенсивности различных факторов на различные нелинейные объекты управления

³ Это вызывает ассоциации с классическими понятием устойчивости управления по Ляпунову.

факторов: это могут быть зависимости, типа показанных на рисунке 34; *периодические* зависимости (ярким примером является таблица Д.И.Менделеева, в которой свойства химических элементов изменяются периодически при линейном увеличении заряда ядра), а также сложные зависимости, в которых трудно найти какую-либо закономерность (напоминающие *случайные*).

Таким образом, у нас есть все основания разделить все значения параметров технологий производства марок вина, относящиеся к одной классификационной шкале, на **три основные группы** (рисунок 31):

- 1. Способствующие получению более высоких результатов.
- 2. Препятствующие получению более высоких результатов.
- 3. Действующие сложным и неоднозначным образом.

7. Выводы

Как показывает анализ результатов численного эксперимента предложенное и реализованное в системе «Эйдос» решение поставленных задач является вполне эффективным, что позволяет обоснованно утверждать, что цель работы достигнута, поставленная проблема решена.

В результате проделанной работы, с помощью системы «Эйдос» были созданы 3 статистические и 7 системно-когнитивных моделей, в которых непосредственно на основе эмпирических данных сформированы обобщенные образы классов по различным значениям показателей качества сделанного вина, изучено влияние значений различных технологий на эти показатели качества, и, на основе этого, решены задачи квалиметрии, классификации и исследования моделируемой предметной области путем исследования ее модели.

Со всеми моделями, созданными в данной статье, можно ознакомиться установив облачное Эйдос-приложение №195 в режиме 1.3 системы «Эйдос».

Литература

- 1. Милаёва И.В., Зайцев С.Ю., Довженко Н.А., Царьков Д.В., Царькова М.С. Регрессионная модель в анализе связи динамического поверхностного натяжения с содержанием жира и белка в молоке коров //Ветеринария, зоотехния и биотехнология. − 2015. № 3. С. 67-76. Источник: https://elibrary.ru/item.asp?id=23205136
- 2. Царьков Дмитрий Викторович, Воронина Оксана Александровна, Милаёва Ирина Валерьевна, Довженко Нина Александровна, Зайцев Сергей Юрьевич, Царькова Марина Сергеевна, Изобретение РФ № 0002600820: «Способ определения жира и белка в молоке по результатам динамического поверхностного натяжения» / Источник: https://edrid.ru/en/rid/217.015.7d23.html
- 3. Казаков В. Н. Межфазная тензиометрия и реометрия биологических жидкостей в терапевтической практике. Донецк: Мед. Университет, 2000. 296 с.
- 4. Милаева И. В., Зарудная Е. Н., Зайцев С. Ю. и др. Межфазная тензиометрия в ветеринарии. М.: ФГОУ ВПО МГАВ-МиБ, 2010. 110 с.

- 5. Зайцев С. Ю., Конопатов Ю. В.Биохимия животных. СПб.: Лань, 2005. 384 с.
- 6. Zaitsev S. Yu., Milaeva I. V., Zarud-naya E. N., Maksimov V. I. (2011) Investigation of dynamic surface tension of biological liquids for animal blood diagnostics. Colloids and Surfaces A: Physicochem. Eng. Aspects, 383, 109-113.
- 7. Луценко Е.В. Синтез адаптивных интеллектуальных измерительных систем с применением АСК-анализа и системы «Эйдос» и системная идентификация в эконометрике, биометрии, экологии, педагогике, психологии и медицине / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2016. №02(116). С. 1 60. IDA [article ID]: 1161602001. Режим доступа: http://ej.kubagro.ru/2016/02/pdf/01.pdf, 3,75 у.п.л.
- 8. Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). Краснодар: КубГАУ. 2002. 605 с. http://elibrary.ru/item.asp?id=18632909
- 9. Луценко Е.В. Метризация измерительных шкал различных типов и совместная сопоставимая количественная обработка разнородных факторов в системно-когнитивном анализе и системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. №08(092). С. 859 883. IDA [article ID]: 0921308058. Режим доступа: http://ej.kubagro.ru/2013/08/pdf/58.pdf, 1,562 у.п.л.
- 10. Луценко Е.В. Инвариантное относительно объемов данных нечеткое мультиклассовое обобщение F-меры достоверности моделей Ван Ризбергена в АСК-анализе и системе «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2017. №02(126). С. 1 32. IDA [article ID]: 1261702001. Режим доступа: http://ej.kubagro.ru/2017/02/pdf/01.pdf, 2 у.п.л.
- 11. Луценко Е.В. Количественный автоматизированный SWOT- и PEST-анализ средствами АСК-анализа и интеллектуальной системы «Эйдос-Х++» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. №07(101). С. 1367 1409. IDA [article ID]: 1011407090. Режим доступа: http://ej.kubagro.ru/2014/07/pdf/90.pdf, 2,688 у.п.л.
- 12. Луценко Е.В. Метод когнитивной кластеризации или кластеризация на основе знаний (кластеризация в системно-когнитивном анализе и интеллектуальной системе «Эйдос») / Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2011. №07(071). С. 528 576. Шифр Информрегистра: 0421100012\0253, IDA [article ID]: 0711107040. Режим доступа: http://ej.kubagro.ru/2011/07/pdf/40.pdf, 3,062 у.п.л.
- 13. Луценко Е.В. Системная теория информации и нелокальные интерпретируемые нейронные сети прямого счета / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2003. №01(001). С. 79 91. IDA [article ID]: 0010301011. Режим доступа: http://ej.kubagro.ru/2003/01/pdf/11.pdf, 0,812 у.п.л.

- 14. Орлов А.И., Луценко Е.В. Системная нечеткая интервальная математика. Монография (научное издание). Краснодар, КубГАУ. 2014. 600 с. ISBN 978-5-94672-757-0. http://elibrary.ru/item.asp?id=21358220
- 15. Луценко Е.В., Открытая масштабируемая интерактивная интеллектуальная online среда «Эйдос» («Эйдос-online»). Свид. РосПатента РФ на программу для ЭВМ, Заявка № 2017618053 от 07.08.2017, Гос.рег.№ 2017661153, зарегистр. 04.10.2017. Режим доступа: http://lc.kubagro.ru/aidos/2017661153.jpg, 2 у.п.л.
- 16. Луценко Е.В. Открытая масштабируемая интерактивная интеллектуальная опline среда для обучения и научных исследований на базе АСК-анализа и системы «Эйдос» / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. – Краснодар: КубГАУ, 2017. – №06(130). С. 1 – 55. – IDA [article ID]: 1301706001. – Режим доступа: http://ej.kubagro.ru/2017/06/pdf/01.pdf, 3,438 у.п.л. http://ej.kubagro.ru/2017/06/pdf/01.pdf, 3,438 у.п.л.
- 17. Луценко Е.В. Проблемы и перспективы теории и методологии научного познания и автоматизированный системно-когнитивный анализ как автоматизированный метод научного познания, обеспечивающий содержательное феноменологическое моделирование / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2017. №03(127). С. 1 60. IDA [article ID]: 1271703001. Режим доступа: http://ej.kubagro.ru/2017/03/pdf/01.pdf, 3,75 у.п.л.
- 18. Луценко Е.В. Универсальная автоматизированная система распознавания образов "Эйдос" (версия 4.1).-Краснодар: КЮИ МВД РФ, 1995.- 76с. http://elibrary.ru/item.asp?id=18630282
- 19. Луценко Е.В. Универсальная когнитивная аналитическая система «Эйдос". Монография (научное издание). Краснодар, КубГАУ. 2014. 600 с. ISBN 978-5-94672-830-0. http://elibrary.ru/item.asp?id=22401787
- 20. Луценко Е. В., Лойко В. И., Лаптев В. Н. Системы представления и приобретения знаний: учеб. пособие / Е. В. Луценко, В. И. Лойко, В. Н. Лаптев. Краснодар: Экоинвест, 2018. 513 с. ISBN 978-5-94215-415-8. https://elibrary.ru/item.asp?id=35641755
- 21. Луценко Е.В. Моделирование сложных многофакторных нелинейных объектов управления на основе фрагментированных зашумленных эмпирических данных большой размерности в системно-когнитивном анализе и интеллектуальной системе «Эйдос-Х++» / Е.В. Луценко, В.Е. Коржаков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. №07(091). С. 164 188. IDA [article ID]: 0911307012. Режим доступа: http://ej.kubagro.ru/2013/07/pdf/12.pdf, 1,562 у.п.л.

Literatura

- 1. Milayova I.V., Zajcev S.Yu., Dovzhenko N.A., Czar`kov D.V., Czar`kova M.S. Regressionnaya model` v analize svyazi dinamicheskogo poverxnostnogo natyazheniya s soderzhaniem zhira i belka v moloke korov //Veterinariya, zootexniya i biotexnologiya. − 2015. − № 3. − S. 67-76. Istochnik: https://elibrary.ru/item.asp?id=23205136
- 2. Czar`kov Dmitrij Viktorovich, Voronina Oksana Aleksandrovna, Milayova Irina Valer`evna, Dovzhenko Nina Aleksandrovna, Zajcev Sergej Yur`evich, Czar`kova Marina Sergeevna, Izobretenie RF № 0002600820: «Sposob opredeleniya zhira i belka v

- moloke po rezul`tatam dinamicheskogo poverxnostnogo natyazheniya» / Istochnik: https://edrid.ru/en/rid/217.015.7d23.html
- 3. Kazakov V. N. Mezhfaznaya tenziometriya i reometriya biologicheskix zhidkostej v terapevticheskoj praktike. Doneczk: Med. Universitet, 2000. 296 s.
- 4. Milaeva I. V., Zarudnaya E. N., Zajcev S. Yu. i dr. Mezhfaznaya tenziometriya v veterinarii. M.: FGOU VPO MGAV-MiB, 2010. 110 s.
- 5. Zajcev S. Yu., Konopatov Yu. V.Bioximiya zhivotny`x. SPb.: Lan`, 2005. 384 s.
- 6. Zaitsev S. Yu., Milaeva I. V., Zarud-naya E. N., Maksimov V. I. (2011) Investigation of dynamic surface tension of biological liquids for animal blood diagnostics. Colloids and Surfaces A: Physicochem. Eng. Aspects, 383, 109-113.
- 7. Lucenko E.V. Sintez adaptivny`x intellektual`ny`x izmeritel`ny`x sistem s primeneniem ASK-analiza i sistemy` «E`jdos» i sistemnaya identifikaciya v e`konometrike, biometrii, e`kologii, pedagogike, psixologii i medicine / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2016. − №02(116). S. 1 − 60. − IDA [article ID]: 1161602001. − Rezhim dostupa: http://ej.kubagro.ru/2016/02/pdf/01.pdf, 3,75 u.p.l.
- 8. Lucenko E.V. Avtomatizirovanny`j sistemno-kognitivny`j analiz v upravlenii aktivny`mi ob``ektami (sistemnaya teoriya informacii i ee primenenie v issledovanii e`konomicheskix, social`no-psixologicheskix, texnologicheskix i organizacionnotexnicheskix sistem): Monografiya (nauchnoe izdanie). Krasnodar: KubGAU. 2002. 605 s. http://elibrary.ru/item.asp?id=18632909
- 9. Lucenko E.V. Metrizaciya izmeritel`ny`x shkal razlichny`x tipov i sovmestnaya sopostavimaya kolichestvennaya obrabotka raznorodny`x faktorov v sistemno-kognitivnom analize i sisteme «E`jdos» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2013. − №08(092). S. 859 − 883. − IDA [article ID]: 0921308058. − Rezhim dostupa: http://ej.kubagro.ru/2013/08/pdf/58.pdf, 1,562 u.p.l.
- 10. Lucenko E.V. Invariantnoe otnositel`no ob``emov danny`x nechetkoe mul`tiklassovoe obobshhenie F-mery` dostovernosti modelej Van Rizbergena v ASK-analize i sisteme «E`jdos» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2017. №02(126). S. 1 32. IDA [article ID]: 1261702001. Rezhim dostupa: http://ej.kubagro.ru/2017/02/pdf/01.pdf, 2 u.p.l.
- 11. Lucenko E.V. Kolichestvenny`j avtomatizirovanny`j SWOT- i PEST-analiz sredstvami ASK-analiza i intellektual`noj sistemy` «E`jdos-X++» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2014. − №07(101). S. 1367 − 1409. − IDA [article ID]: 1011407090. − Rezhim dostupa: http://ej.kubagro.ru/2014/07/pdf/90.pdf, 2,688 u.p.l.
- 12. Lucenko E.V. Metod kognitivnoj klasterizacii ili klasterizaciya na osnove znanij (klasterizaciya v sistemno-kognitivnom analize i intellektual`noj sisteme «E`jdos») / E.V. Lucenko, V.E. Korzhakov // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2011. №07(071). S. 528 576. Shifr Informregistra: 0421100012\0253, IDA [article ID]: 0711107040. Rezhim dostupa: http://ej.kubagro.ru/2011/07/pdf/40.pdf, 3,062 u.p.l.

- 13. Lucenko E.V. Sistemnaya teoriya informacii i nelokal`ny`e interpretiruemy`e nejronny`e seti pryamogo scheta / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2003. − №01(001). S. 79 − 91. − IDA [article ID]: 0010301011. − Rezhim dostupa: http://ej.kubagro.ru/2003/01/pdf/11.pdf, 0,812 u.p.l.
- 14. Orlov A.I., Lucenko E.V. Sistemnaya nechetkaya interval`naya matematika. Monografiya (nauchnoe izdanie). Krasnodar, KubGAU. 2014. 600 s. ISBN 978-5-94672-757-0. http://elibrary.ru/item.asp?id=21358220
- 15. Lucenko E.V., Otkry`taya masshtabiruemaya interaktivnaya intellektual`naya on-line sreda «E`jdos» («E`jdos-online»). Svid. RosPatenta RF na programmu dlya E`VM, Zayavka № 2017618053 ot 07.08.2017, Gos.reg.№ 2017661153, zaregistr. 04.10.2017. Rezhim dostupa: http://lc.kubagro.ru/aidos/2017661153.jpg, 2 u.p.l.
- 16. Lucenko E.V. Otkry`taya masshtabiruemaya interaktivnaya intellektual`naya on-line sreda dlya obucheniya i nauchny`x issledovanij na baze ASK-analiza i sistemy` «E`jdos» / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. Krasnodar: KubGAU, 2017. №06(130). S. 1 55. IDA [article ID]: 1301706001. Rezhim dostupa: http://ej.kubagro.ru/2017/06/pdf/01.pdf, 3,438 u.p.l. http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf
- 17. Lucenko E.V. Problemy` i perspektivy` teorii i metodologii nauchnogo poznaniya i avtomatizirovanny`j sistemno-kognitivny`j analiz kak avtomatizirovanny`j metod nauchnogo poznaniya, obespechivayushhij soderzhatel`noe fenomenologicheskoe modelirovanie / E.V. Lucenko // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2017. − №03(127). S. 1 − 60. − IDA [article ID]: 1271703001. − Rezhim dostupa: http://ej.kubagro.ru/2017/03/pdf/01.pdf, 3,75 u.p.l.
- 18. Lucenko E.V. Universal`naya avtomatizirovannaya sistema raspoznavaniya obrazov "E`jdos" (versiya 4.1).-Krasnodar: KYuI MVD RF, 1995.- 76s. http://elibrary.ru/item.asp?id=18630282
- 19. Lucenko E.V. Universal`naya kognitivnaya analiticheskaya sistema «E`jdos". Monografiya (nauchnoe izdanie). Krasnodar, KubGAU. 2014. 600 s. ISBN 978-5-94672-830-0. http://elibrary.ru/item.asp?id=22401787
- 20. Lucenko E. V., Lojko V. I., Laptev V. N. Sistemy` predstavleniya i priobreteniya znanij : ucheb. posobie / E. V. Lucenko, V. I. Lojko, V. N. Laptev. Krasnodar : E`koinvest, 2018. 513 s. ISBN 978-5-94215-415-8. https://elibrary.ru/item.asp?id=35641755
- 21. Lucenko E.V. Modelirovanie slozhny`x mnogofaktorny`x nelinejny`x ob``ektov upravleniya na osnove fragmentirovanny`x zashumlenny`x e`mpiricheskix danny`x bol`shoj razmernosti v sistemno-kognitivnom analize i intellektual`noj sisteme «E`jdos-X++» / E.V. Lucenko, V.E. Korzhakov // Politematicheskij setevoj e`lektronny`j nauchny`j zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchny`j zhurnal KubGAU) [E`lektronny`j resurs]. − Krasnodar: KubGAU, 2013. − №07(091). S. 164 − 188. − IDA [article ID]: 0911307012. − Rezhim dostupa: http://ej.kubagro.ru/2013/07/pdf/12.pdf, 1,562 u.p.l.