Министерство сельского хозяйства Российской федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Факультет заочного обучения Кафедра системного анализа и обработки информации

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: Интеллектуальные информационные систем

на тему: АСК-анализ отрицательных и положительных оценок игры DOTA 2
выполнил студент группы: ПИз1401 Городецкий Роман Вадимович
Проверил: д.э.н, профессор ВАК Луценко Евгений Виниаминович
Защищена Оценка

Краснодар, 2017

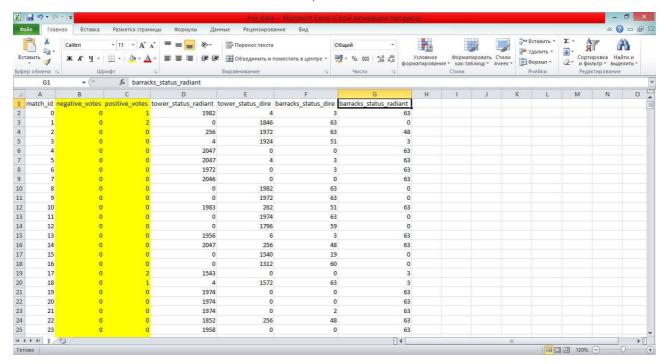
1. Синтаксис и Верификация моделей.

1.1 Описание решения.

В соответствии с методологией АСК-анализа решение поставленной задачи проведем в 4 этапа:

- 1) Преобразование исходных данных из HTML-формата в промежуточные файлы MS Excel;
- 2) Преобразование исходных данных из промежуточных файлов MS Excel в базы данных системы "Эйдос";
- 3) Синтез и верификация моделей предметной области;
- 4) Применение моделей для решения задач индентификации, прогнозирования и исследования предметной области.

1.2 Преобразование исходных данных из HTML-формата в промежуточные файлы MS Excel


Из электронного ресурса баз данных allexcel возьмем базу данных dota2"match.csv", где уберем часть из таблицы и оставим интересующие(match_id, negative_votes, positive_votes, tower_status_radiant, tower_status_dire, barracks_status_dire, barracks_status_radiant). Ссылка на базу данных
https://www.kaggle.com/devinanzelmo/dota-2-skill-rating-with-trueskill/data.

Общие описания задачи:

Столбен 2-3 является классом.

- 1) match_id индивидуальный номер матча;
- 2) negative_votes отрицательные отзывы после игры;
- 3) positive_votes- положителные отзывы после игры;
- 4) tower_status_radiant- спасенные("заденаиные") башни союзником;
- 5) tower_status_dire- уничтоженные башни противником;
- 6) barracks_status_radiant- спасенные("заденаиные") бараки союзником;
- 7) barracks_status_dire- уничтоженные башни противником;

Таблица 1- match.xls

Поскольку ввод данных в систему Эйдос планируется осуществить с помощью ее универсального программного интерфейса импорта данных из внешних баз данных, который работает с файлами MS Excel, то преобразуем данные из html-файла в excel-файл, для чего выполним следующие операции.

Скопируем следующую таблицу MS Word в MS и запишем ее с именем: Inp_data.xls в папку: c:\ Aidos-X\AID_DATA\Inp_data\. В файле Inp_data.xls. В результате получим исходную таблицу данных, полностью подготовленную для обработки в систему "Эйдос" и записанную в нужную папку в виде нужного файла нужного типа с нужным именем.

Автоматизированная формализация предметной области путем импорта исходных данных из внешних баз данных в систему "Эйдос".

Для загрузки базы исходных данных в систему "Эйдос" необходимо воспользоваться универсальным программным интерфейсом для ввода данных из внешних баз данных табличного вида, режима 2.3.2.2.

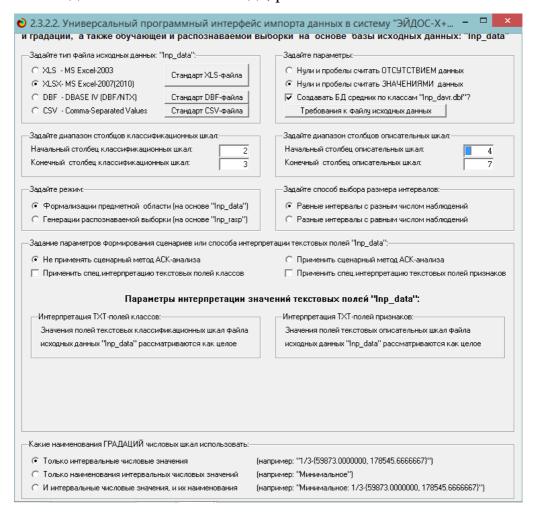


Рисунок 1 Экранная форма Универсального программного интерфейса импорта данных в систему "Эйдос" (режим 2.3.2.2)

В экранной форме, приведённой на рисунке 1, задать настройки, показанные на рисунке:

- 1) Задайте тип исходных файлов Inp_data: XLS-MS Excel-2003;
- 2) Задайте диапазон шкал: Начальный столбец классифицированных шкал- 2, конечный столбец классифицированных шкал- 3(второй столбец в таблице);
- 3) Задайте диапазон столбцов описательных шкал: Начальных столбец описательных шкал- 4, конечный столбец описательных шкал- 7;

После нажать кнопку ОК. Далее откроется окно, где размещена информация размеренности модели (рисунок 2). В этом окне необходимо нажать кнопку "Выйти на создание модели".

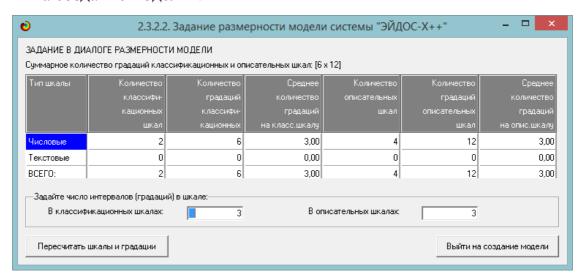


Рисунок 2. Задание размеров модели системы "Эйдос"

Далее открывается окно, отображющие стадию процесса импорта данных из внешней БД Inp_data.xls в систему "Эйдос" (рисунок 3), а также прогноз времени завершения этого процесса. В том окне необходимо дождаться завершения формализации предметной области и нажать кнопку ОК.

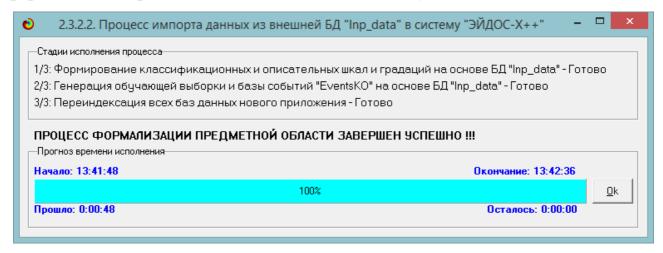


Рисунок 3. Процесс импорта данных из внешней таблицы БД Inp_data.xls В результате формируются классификационные и описательные шкалы и градации, с применением которых исходные данные кодируются и представляются в форме эвентологических баз данных. Этим самым полностью автоматизировано выполняется 2-й этап АСК- анализа "Формализация

предметной области". Для просмотра классификационных шкал и градаций необходимо запустить режим 2.1(рисунок 4).

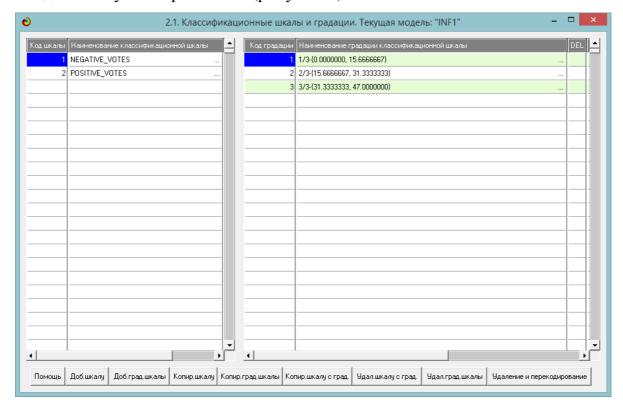


Рисунок 4. Классификационные шкалы и градации

Для просмотра описательных шкал и градаций необходимо запустить режим 2.2(рисунок 5).

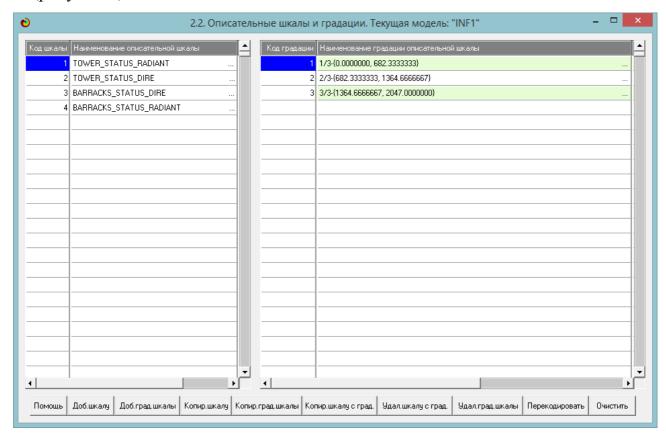


Рисунок 5. Описательные шкалы и градации

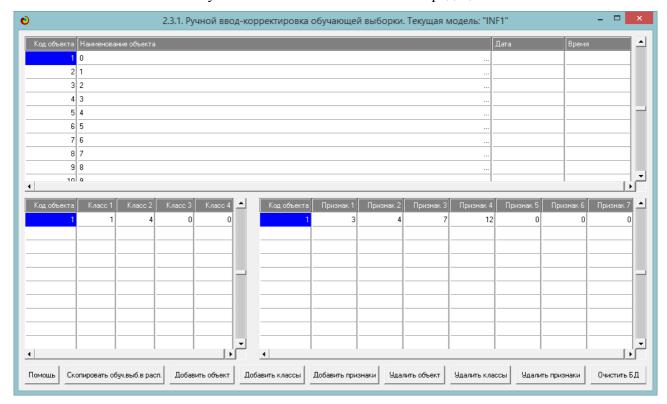


Рисунок 6. Обучающая выборка

Тем самым создаются все необходимые и достаточные предпосылки для выявления силы и направления причинно-следственных связей между значениями факторов и результатами их совместного системного воздействия.

1.3 Синтез и верификация статистических и информационных моделей.

Далее запускаем режим 3.5, в котором задаются модели для синтеза и верификации, а так же задается модель, которой по окончанию режима присваивается статус текущей. Так, как значений 50000 и программа может анализировать эти данные n-е количество времени, выбираем условие-Копировать N случайных объектов, в появившемся окне указываем кол-во 100, что дает возможность значительно сократить время ожидания и точность данных для дальнейшего анализа(рисунок 7).

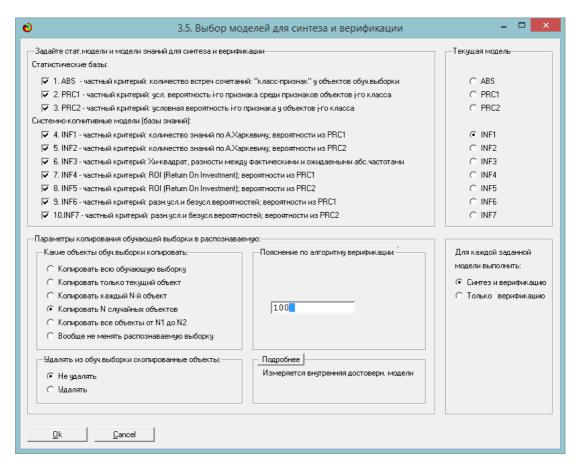


Рисунок 7. Синтез и верификация статистических моделей и моделей знаний.

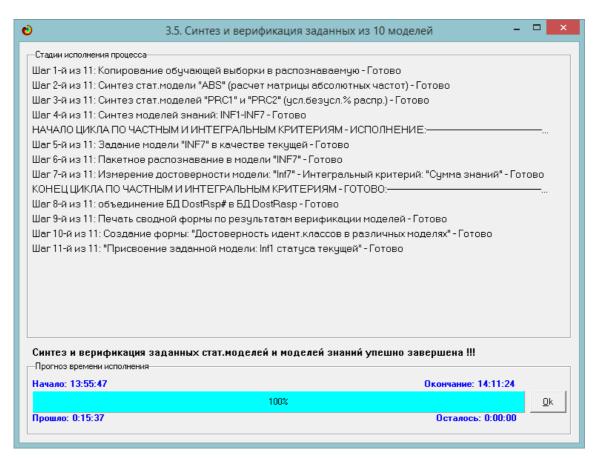


Рисунок 8. Выбор моделей для синтеза и верификации, а так же текущей модели

1.4 Виды моделей системы "Эйдос"

Рассмотрим ращение задачи идентификации на примере модели INF1, в которой рассчитано количество информации по А. Харкевичу, которое мы получаем о принадлежности идентифицируемого объекта к каждому из классов, если знаем, что у этого объекта есть некоторый признак.

Частичные критерии представляют собой просто формулы для преобразования матрицы абсолютных частот(таблица 2), в матрицы условных и безусловных процентных распределений, и матрицы знаний(таблица 3,4).

Таблица 2- матрица абсолютных частот(ABS) и условных, безусловных процентных распределений.

Таблица 3- матрица информационностей (Модель INF1) в битах

ОД	Наименование описательной	1.	2.	3.	4.	5.	6.	Сумма	Среднее	Средн.
					POSITIVE_VOTES	POSITIVE_VOTES				
						2/3				
					(0.0,	{26.7,				
		15.7}	31.3}	47.0}	26.7}	53.3}	80.0}			
1	TOWER_STATUS_RADIANT-1/3-(0.0000000, 68	0.000	0.018	1.035	0.000		0.357			0.453
2	TOWER_STATUS_RADIANT-2/3-(682.3333333,	0.000			-0.005	32.422		32.417	5.403	13.237
3	TOWER_STATUS_RADIANT-3/3-(1364.6666667,	0.000	-0.010		0.000	-0.010				
4	TOWER_STATUS_DIRE-1/3-(0.0000000, 682.33	0.000	0.890		0.000	0.417	0.260		0.261	0.353
5	TOWER_STATUS_DIRE-2/3-(682.33333333, 1364	0.000			0.000			0.000		0.000
6	TOWER_STATUS_DIRE-3/3-{1364.6666667, 204	0.000		1.149	0.000	-0.463			0.067	0.564
7	BARRACKS_STATUS_DIRE-1/3-{0.0000000, 21.0	0.000	0.161		0.000	0.161	-0.226		0.016	0.142
8	BARRACKS_STATUS_DIRE-2/3-{21.0000000, 42	0.000			0.000			0.000	0.000	0.000
9	BARRACKS_STATUS_DIRE-3/3-{42.0000000, 63	0.000	-0.115		0.000	-0.115				0.336
10	BARRACKS_STATUS_RADIANT-1/3-{0.0000000,	0.000	-0.425		0.000	-0.712		-1.137		
11	BARRACKS_STATUS_RADIANT-2/3-{21.000000	0.000			0.000			0.000	0.000	0.000
12	BARRACKS_STATUS_RADIANT-3/3-{42.000000	0.000	0.336		0.000	0.558			0.409	0.357
	Сумма	0.000	0.855	3.736	-0.004	32.023	0.729	37.338		
	Среднее	0.000	0.071	0.311	0.000	2.669	0.061		0.519	
	Среднеквадратичное отклонение	0.000	0.311	0.470	0.002	9.376	0.307			3.825

Таблица 4- матрица знаний(INF3)

	Наименование описательной	1.	2.	3.	4.	5.	6.	Сумма	Среднее	Средн.
		{0.0, 15.7}	{15.7, 31.3}	{31.3, 47.0}	{0.0, 26.7}	{26.7, 53.3}	{53.3, 80.0}			
	TOWER STATUS RADIANT-1/3-(0.0000000, 68	-0.544	0.035		1	-0.930	1			0.610
2	TOWER STATUS RADIANT-2/3-(682.3333333,	0.019	-0.015						_	0.610
3	TOWER_STATUS_RADIANT-3/3-{1364.6666667,	0.525	-0.019			-0.040			_	0.470
1	TOWER_STATUS_DIRE-1/3-{0.00000000, 682.33	-1.354	1.883							1.655
5	TOWER_STATUS_DIRE-2/3-(682.33333333, 1364	0.028	-0.022			-0.045				0.038
6	TOWER_STATUS_DIRE-3/3-{1364.6666667, 204	1.326	-1.861	0.535	2.118	-1.722	-0.396			1.620
7	BARRACKS_STATUS_DIRE-1/3-{0.00000000, 21.0	0.153	0.278	-0.431	-0.263	0.555	-0.292			0.387
1	BARRACKS_STATUS_DIRE-2/3-{21.0000000, 42	0.023	-0.018	-0.005	0.051	-0.037	-0.014			0.032
)	BARRACKS_STATUS_DIRE-3/3-{42.0000000, 63	-0.176	-0.259	0.435	0.213	-0.518	0.306			0.373
)	BARRACKS_STATUS_RADIANT-1/3-{0.00000000,	1.174	-0.739	-0.435	3.782	-2.478	-1.304			2.203
1	BARRACKS_STATUS_RADIANT-2/3-{21.000000	0.019	-0.015	-0.004	0.041	-0.030	-0.011			0.026
2	BARRACKS_STATUS_RADIANT-3/3-{42.000000	-1.192	0.754	0.438	-3.823	2.508	1.315			2.228
	Сумма									
	Среднее									
	Среднеквадратичное отклонение	0.799	0.867	0.409	1.899	1.378	0.638			1.076
									_	

1.5 Результаты верификации моделей.

Результаты верификации (оценки достоверности) моделей, отличающихся частными критериями с одним приведенным выше интегральным критерием(рисунок 9).

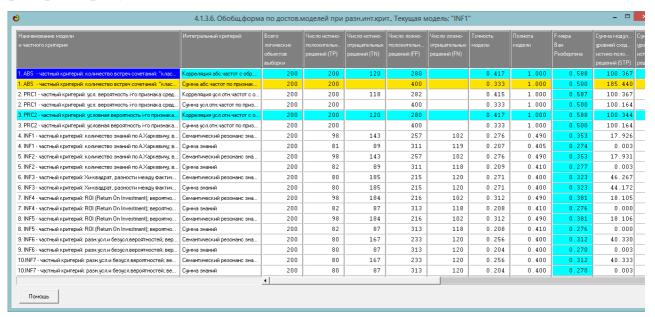
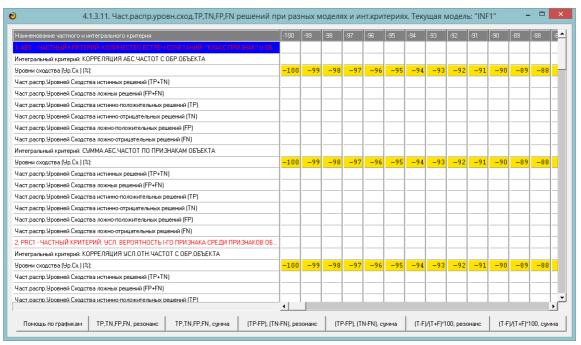



Рисунок 9. Оценка достоверности моделей

К сожалению, в данном приложении нет достоверной модели. Чтобы улучшить достоверность модели можно воспользоваться режимом 3.7.1

Статистические модели, как правило, дают более низкую средневзвешенную достоверность идентификации и не идентификации, чем модели знаний и практически никогда- более высокую. Этим и оправдано применение моделей

знаний и интеллектуальных технологий. На рисунке 10 приведены частичные распределения уровней сходства и различия для верно и ошибочно идентифицированных и не идентифицированных ситуаций наиболее достоверной модели.

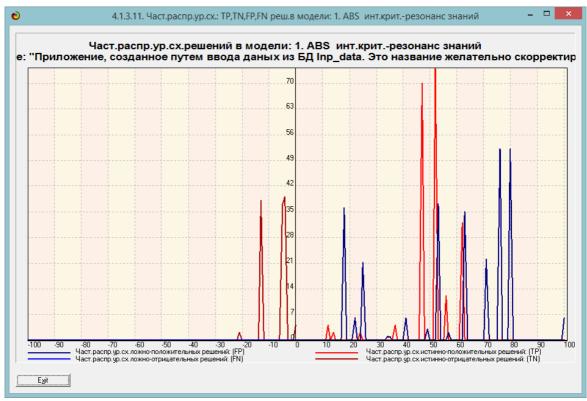


Рисунок 10. Частичное распределение сходства-различия верно и ошибочно идентифицированных состояний объекта моделирования модели

2. РЕШЕНИЕ ЗАДАЧ В НАИБОЛЕЕ ДОСТОВЕРНОЙ МОДЕЛИ

2.1 Решение задачи идентификации

В соответствии с технологией АСК-анализа зададим текущей модель INF1 В режиме 5.6 и приведем пакетное распознавание в режиме 4.2.1(рисунок 11).

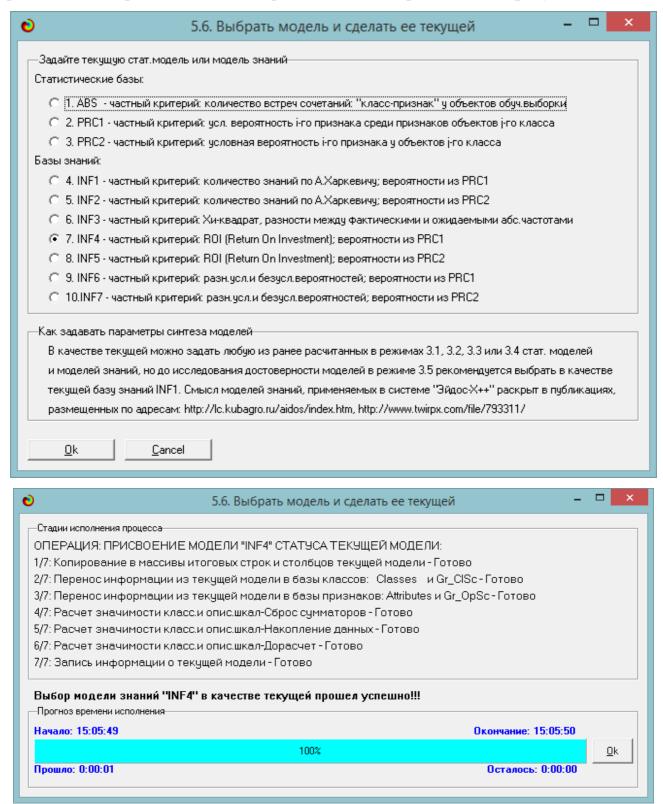
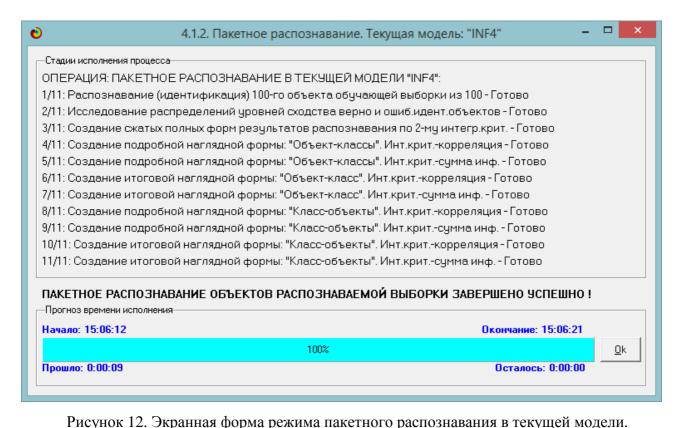



Рисунок 11. Экранные формы режима задания модели в качестве текущей

В результате пакетного распознавания в текущей модели создается ряд баз

данных, которые визуализируются в выходных экранных формах, отражающих результаты решения задачи идентификации и прогнозирования.

Режим 4.1.3 системы "Эйдос" обеспечивает отражения результатов идентификации и прогнозирования в различных формах:

- 1. Подробно наглядно: "Объект-классы";
- 2. Подробно наглядно: "Классы-Объекты";
- 3. Итоги наглядно: "Объект-классы";
- 4. Итоги наглядно: "Классы-Объекты";
- 5. Подробно сжато: "Объект-классы".
- 6. Обобщенная форма по достоверности моделей при разных интегральных критериях;
- 7. Обобщенный статистический анализ результатов идентификации по моделям интегральным критериям;
- 8. Статистический анализ результатов идентификации по классам, моделям и интегральным критериям;

- 9. Распознавание уровня сходства при разных моделях и интегральных критериях;
- 10. Достоверность идентификации классов при разных моделях и интегральных критериях.

Ниже кратко рассмотрим некоторые из них.

На рисунке 11 и 12 приведены примеры прогнозов высокой и низкой достоверности частоты и классов ирисов в наиболее достоверной модели INF1 на основе наблюдения предыстории их развития:

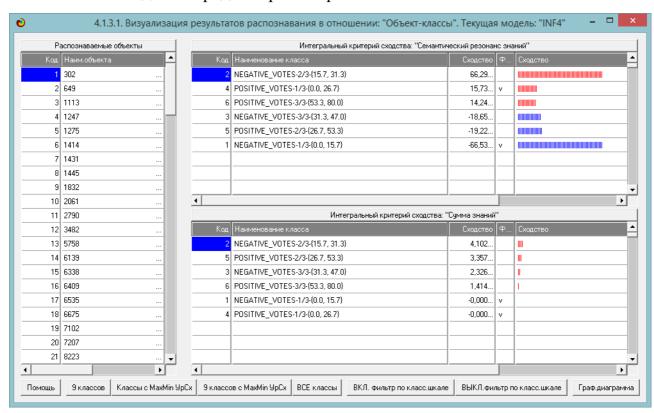


Рисунок 13. Пример идентификации классов и моделей INF4

2.2. Когнитивные функции.

Рассмотрим режим 4.5, в котором реализована возможность визуализации когнитивных функций для любых моделей и любых сочетаний классификационных и описательных шкал(рисунок 14).

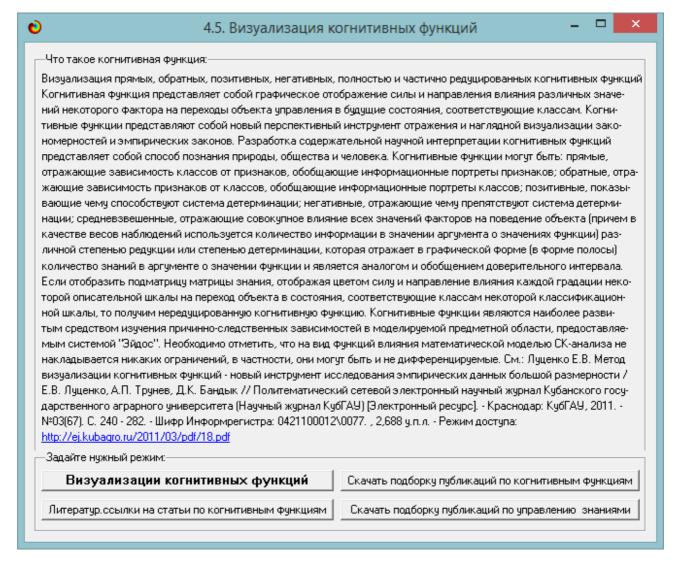


Рисунок 14. Экранная форма режима визуализации когнитивных функций В когнитивных функциях количество информации в значениях аргумента о значениях функции отображается цветом(красным максимальное, синим минимальное), линией соединены значения функции, о которых в значении аргумента содержаться максимальное количество информации, ширина линии(аналог доверительного интервала) отражает степень неопределенности значения функции, которое тем ниже, чем больше информации о нем значении функции(рисунок 15, 16).

На рисунке 15 представлена когнитивная функция, показывающая, что в малой широте и долготе преобладает rating 1/3(0.0000000, 15.6666667). В средней широте и долготе вызовы, rating 2/3(15.6666667, 31.3333333). В большой широте и долготе преобладает rating 3/3(31.3333333, 470000000).

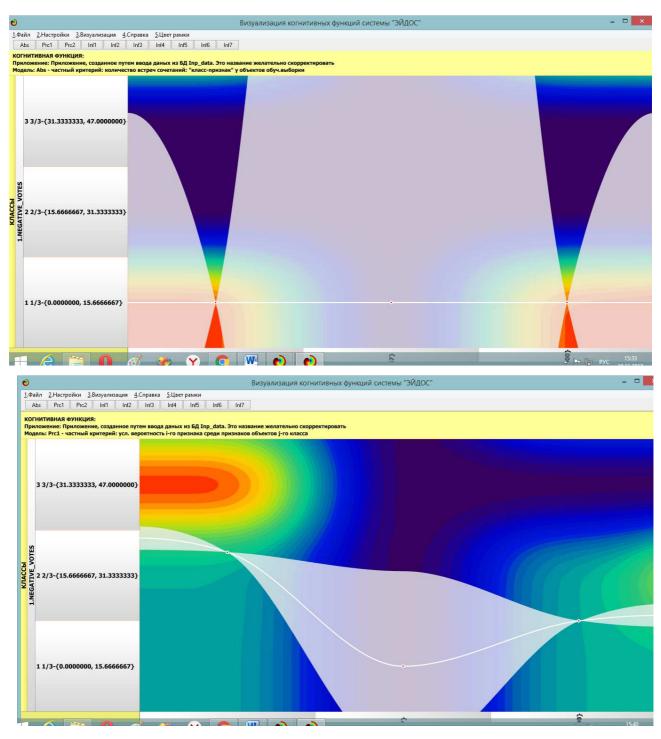


Рисунок 15. Когнитивная функция, отражающая взаимосвязь широты и долготы с отрицательных отзывов.

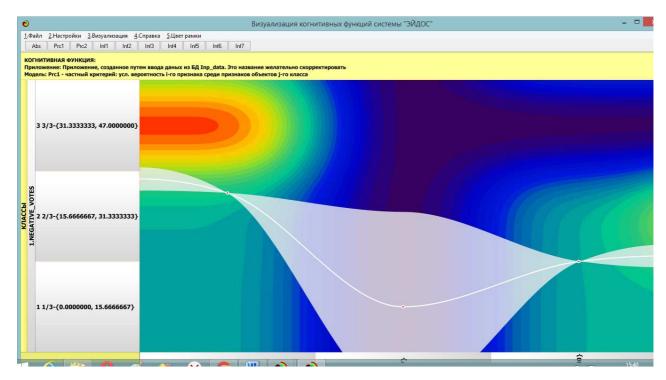


Рисунок 16 Когнитивная функция отражающая максимальное число "заденаиных" башен союзником.

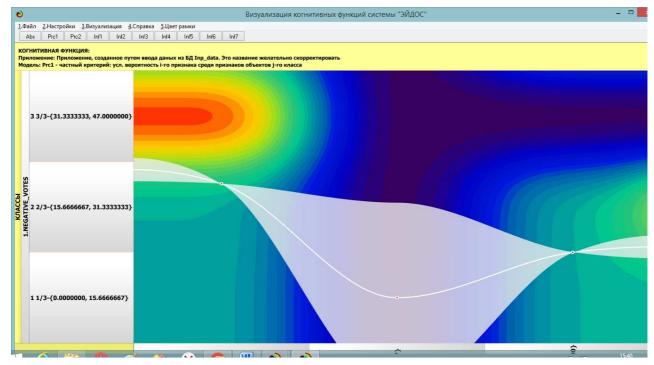


Рисунок 17. Когнитивная функция отражающая максимальное число положительных отзывов Сходства-различие обобщенных образов различных результатов научной деятельности по характерным для них системам значений показателей. Результаты сравнения классов по системе рейтинга состава отрицательных отзывов приведены на рисунке 18:

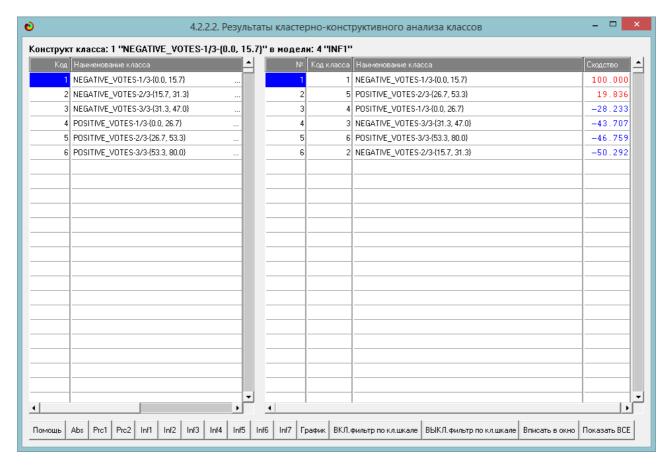


Рисунок 18. Результаты сравнения классов по системе рейтинга состава отрицательных отзывов

2.3. SWOT и PERS матрицы диаграммы

SWOT-анализ является широко известным и общепризнанным методом стратегического планирования. Результаты SWOT-анализа выводились в форме индивидуальных портретов. В версии системы под MS Windows: "Эйдос-Х++" предложено автоматизированное количественное рещение прямой и обратной задач SWOT-анализа с построением традиционных SWOT-матриц и диаграмм(рисунок 19).

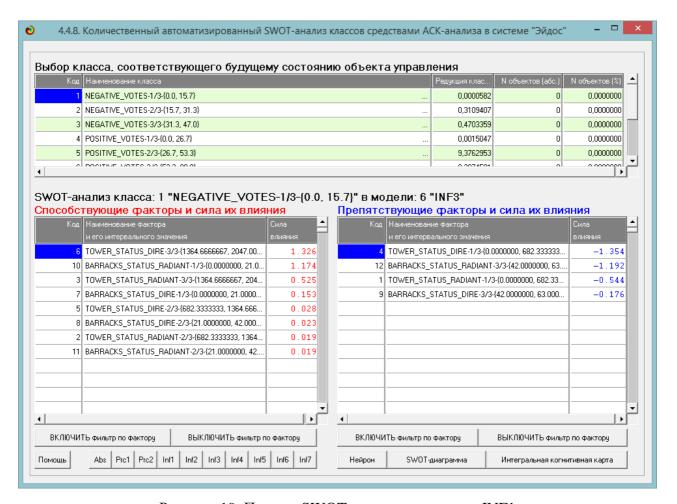


Рисунок 19. Пример SWOT-матрицы в модели INF1

Список Использованной Литературы

- 1. Луценко Е.В. Универсальная когнитивная аналитическая система "Эйдос".
 - Краснодар: КубГАУ, 2014.-600с.
- 2. Луценко Е.В., Коржаков В.Е., Лаптев В.Н. Теоретическое основы и технология применения системно-когнитивного анализа в автоматизированных системах обработки информации и управления. Майкоп: АГУ, 2009-536с.
- 3. Луценко Е.В., Лойко В.И., Лаптев В.Н. Современные информационнокоммуникационные технологии в научно-исследовательской деятельности и образовании: учеб. пособие.- Краснодар: КубГАУ, 2017.-450с.
- 4. Орлов А.И., Луценко Е.В. Системная нечеткая интервальная математика.-Краснодар: КубГАУ. 2014-600с.
- 5. http://provodim24.ru