

Автоматизированный системно-когнитивный анализ: новые возможности для АПК

Луценко Евгений Вениаминович

Профессор, доктор экономических наук, кандидат технических наук, профессор кафедры компьютерных технологий и систем

Проблема, ее причины и пути решения с применением систем искусственного интеллекта

Различные науки отличаются друг от друга объектом исследования, факторами, влияющими на объект исследования и результатами влияния этих факторов, т.е. тем, в какие состояния объект исследования переходит под действием этих факторов.

Главная проблема любой науки, стремящейся перейти с эмпирического на теоретический уровень познания, состоит в построении модели, адекватно отражающей силу и направление влияния факторов на переход объекта исследования (моделирования) в различные будущие состояния, как целевые, так и нежелательные.

Причинами возникновения этой проблемы являются очень высокая сложность и нелинейность объекта исследования, естественные психофизиологические и временные ограничения человека по аналитической обработке информации, а также неполнота (фрагментированность) и зашумленность исходных данных об объекте исследования, их представленность в различных типах шкал (номинальных, порядковых и числовых), в различных единицах измерения, в различных типах данных (текстовых, числовых и графических), очень большая размерность и динамичность исходных данных.

Решением данной проблемы является использование систем искусственного интеллекта (СИИ) для решения задач идентификации, прогнозирования, классификации ,принятия решений и исследования объекта моделирования везде, где ранее для этого использовался исключительно естественный интеллект.

Системы искусственного интеллекта **на много порядков** увеличивают естественные интеллектуальные возможности человека, примерно также, как двигатель во много сотен, тысячи и даже миллионов раз увеличивает его физические возможности.

Например, если раньше новые агротехнологии разрабатывали целые научные институты в течение ряда лет, то с использованием интеллектуальных систем это может сделать агроном, освоивший эту технологи. просто автоматически с помощью программного интерфейса введя в систему исходные данные из журнала агронома о том, что делалось на полях, в садах или теплицах, и какие результаты в натуральном и стоимостном выражении в результате этого были получены (например количество и качество продукции, прибыль и рентабельность в целом хозяйству и по номенклатуре товаров).

Автоматизированный системно-когнитивный анализ

Однако для этого необходимы универсальные, доступные, удобные и простые в освоении системы искусственного интеллекта, реально работающие с любыми имеющимися исходными данными, а не предъявляющие к этим исходным данным практически невыполнимые требования, типа абсолютной точности, абсолютной полноты и абсолютной независимости факторов, т.е. линейности объекта моделирования.

Именно такими характеристиками обладает современная интеллектуальная технология: «**Автоматизированный системно-когнитивный анализ»** (АСК-анализ), предложенная в 2002 году проф.Луценко Е.В. (он же автор и разработчик программного инструментария АСК-анализа — интеллектуальной системы «Эйдос»).

АСК-анализ является междисплинарным научным направлением, на стыке как минимум 3-х специальностей:

- 5.12.4. Когнитивное моделирование;
- 1.2.1. Искусственный интеллект и машинное обучение;
- 2.3.1. Системный анализ, управление и обработка информации.

И включает:

- Автоматизированный системно-когнитивный анализ числовых и текстовых табличных данных;
- Автоматизированный системно-когнитивный анализ текстовых данных;
- Спектральный и контурный автоматизированный системно-когнитивный анализ изображений;
- Сценарный автоматизированный системно-когнитивный анализ временных и динамических рядов.

Автоматизированный системно-когнитивный анализ включает: формализуемую когнитивную концепцию, математическую модель, методику численных расчетов и реализующий их программный инструментарий, в качестве которого в настоящее время выступает постоянно совершенствуемая автором универсальная когнитивная аналитическая система "Эйдос".

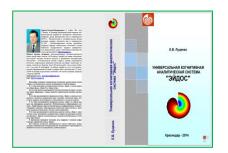
Все эти компоненты и этапы АСК-анализа подробно описаны примерно в 1080 научных работах автора, в т.ч. в 40 монографиях (2 находится в типографиях) и 27 учебниках и учебных пособиях. На систему «Эйдос» и ее подсистемы получено 32 свидетельства Роспатента (еще 2 свидетельства в находятся в процессе оформления).

Полную информацию об этом можно получить на сайтах:

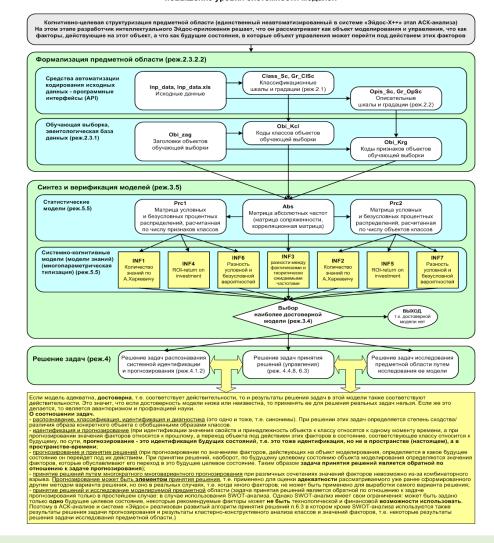
- http://lc.kubagro.ru/;
- https://www.researchgate.net/profile/Eugene-Lutsenko.

Свидетельства Роспатента на систему «Эйдос» и ее подсистемы

Монографии по Автоматизированному системно-когнитивному анализу и интеллектуальной системе «Эйдос» (начало)



Монографии по Автоматизированному системно-когнитивному анализу и интеллектуальной системе «Эйдос» (продолжение)

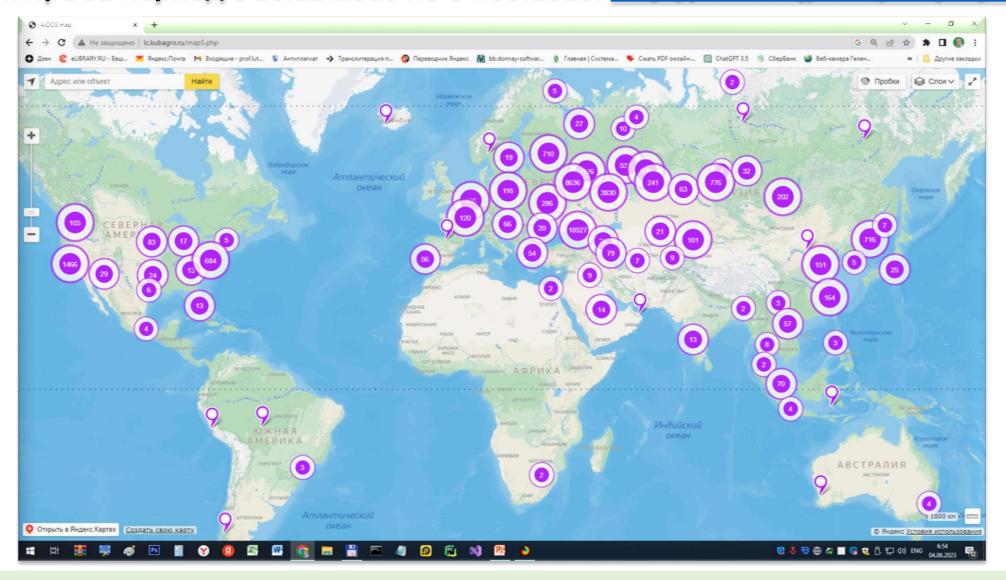


Главное, что делает система «Эйдос» - это преобразование исходных данных в информацию, а ее в знания и решение на основе этих знаний ряда задач

Последовательность обработки данных, информации и знаний в системе «Эйдос», повышение уровня системности данных, информации и знаний, повышение уровня системности моделей

Типовые задачи и подзадачи, решаемые системой «Эйдос»

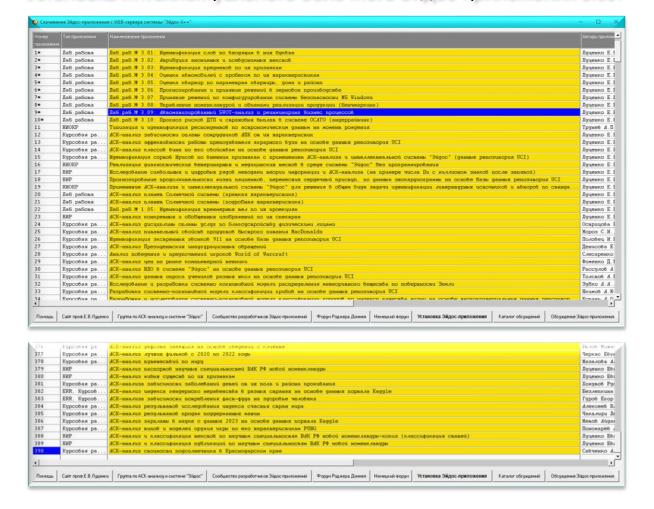
- 1. Задача-1. Когнитивно-целевая структуризация предметной области.
- 2. Задача-2. Формализация предметной области.
- 3. Задача-3. Синтез статистических и системно-когнитивных моделей. Многопараметрическая типизация и частные критерии знаний.
- 4. Задача-4. Верификация моделей.
- 5. Задача-5. Выбор наиболее достоверной модели.
- 6. Задача-6. Системная идентификация и прогнозирование.
 - 6.1. Интегральный критерий «сумма знаний».
 - 6.2. Интегральный критерий «семантический резонанс знаний».
 - 6.3. Важные математические свойства интегральных критериев.
 - 6.4. Решение задачи идентификации и прогнозирования в системе «Эйдос».
- 7. Задача-7. Поддержка принятия решений.
 - 7.1. Упрощенный вариант принятия решений как обратная задача прогнозирования, позитивный и негативный информационные портреты классов, SWOT-анализ.
 - 7.2. Развитый алгоритм принятия решений в адаптивных интеллектуальных системах управления на основе АСК-анализа и системы «Эйдос».
- 8. Задача-8. Исследование объекта моделирования путем исследования его модели.
 - 8.1. Инвертированные SWOT-диаграммы значений описательных шкал (семантические потенциалы).
 - 8.2. Кластерно-конструктивный анализ классов.
 - 8.3. Кластерно-конструктивный анализ значений описательных шкал.
 - 8.4. Модель знаний системы «Эйдос» и нелокальные нейроны.
 - 8.5. Нелокальная нейронная сеть.
 - 8.6. 3d-интегральные когнитивные карты.
 - 8.7. 2d-интегральные когнитивные карты содержательного сравнения классов (опосредованные нечеткие правдоподобные рассуждения).
 - 8.8. 2d-интегральные когнитивные карты содержательного сравнения значений факторов (опосредованные нечеткие правдоподобные рассуждения).
 - 8.9. Когнитивные функции.
 - 8.10. Значимость описательных шкал и их градаций.
 - 8.11. Степень детерминированности классов и классификационных шкал.



Запуски системы «Эйдос» в мире за период с 16.12.2016 по 04.06.2023: http://lc.kubagro.ru/map5.php (фрагмент)

	Дата ДД ММ.ГГ	Время ЧЧ:ММ:СС	IP-aspec	Домен	Страна		Регион	Город	Почтовый индекс	Вре менн ой пояс	Широта
	1 09.12.2016	17:31:18	71.39.117.6	US	United States	ID	Idaho	Boise	83707	America/Boise	4
	2 09.12.2016	17:31:51	71.39.117.6	US	United States	ID	Idaho	Boise	83707	America/Boise	4
	3 09.12.2016	17:33:15	71.39.117.6	US	United States	ID	Idaho	Boise	83707	America/Boise	4
	4 09.12.2016	17:45:53	176.59.52.241	RU	Russia	MOM	Moscov	Moscov	129075	Europe/Moscov	
	5 09.12.2016	17:57:21	213.215.118.194	SK	Slovakia	NI	Nitra	Nitra	949 01	Europe/Bratislava	- 4
	6 09.12.2016	18:43:30	2.95.13.30	RU	Russia	SAM	Samara Oblast	Samara	404146	Europe/Samara	
	7 09.12.2016	18:58:06	71.39.117.6	US	United States	ID	Idaho	Boise	83707	America/Boise	-
	8 09.12.2016	18:58:47	71.246.99.47	US	United States	NY	New York	Brooklyn	11214	America/New_York	-
	9 09.12.2016	19:00:16	71.246.99.47	US	United States	NY	New York	Brooklyn	11214	America/New_York	-
1	0 09.12.2016	19:00:20	71.39.117.6	US	United States	ID	Idaho	Boise	83707	America/Boise	-
1	1 09.12.2016	19:01:05	71.246.99.47	US	United States	NY	New York	Brooklyn	11214	America/New_York	-
1	2 09.12.2016	21:23:15	2.95.13.30	RU	Russia	SAM	Samara Oblast	Samara	404146	Europe/Samara	
1	3 09.12.2016	23:24:39	62.138.2.243	FR	France	GES	Grand Est	Strasbourg	67000	Europe/Paris	
1	4 09.12.2016	23:37:09	128.71.142.145	RU	Russia	SAM	Samara Oblast	Samara	404146	Europe/Samara	
1	5 10.12.2016	5:13:19	217.236.124.225	DE	Germany	BW	Baden-Wurttemberg	Konstanz	78467	Europe/Berlin	
1	6 10.12.2016	8:56:12	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscow	
1	7 10.12.2016	9:01:58	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscow	-
1	8 10.12.2016	9:11:11	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscov	-
1	9 10.12.2016	11:19:54	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscow	
2	0 10.12.2016	16:06:19	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscow	
2	1 10.12.2016	16:08:05	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscow	-
2	2 10.12.2016	16:24:58	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscow	-
2	3 10.12.2016	19:44:11	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscow	-
2	4 10.12.2016	20:13:01	128.70.246.180	RU	Russia	KDA	Krasnodar Krai	Krasnodar	350000	Europe/Moscow	-
2	5 11.12.2016	1:19:15	213.138.81.74	RU	Russia	ROS	Rostov Oblast	Taganrog	347924	Europe/Moscow	-
2	6 11.12.2016	5:06:04	66.249.76.153	US	United States	CA	California	Mountain View	94043	America/Los_Angeles	1
2	7 11.12.2016	5:10:54	66.249.76.151	US	United States	CA	California	Mountain View	94043	America/Los_Angeles	
			*								
	СОРТИРО	1	e No IP No IP-unique No	. N	ID. minus Do assessed		Карта мира (необходим FTP-доступ): Все за период Unique IP без надписей Un	1	остаточно http	ресоздать базу запиское системы "Эйдг	

Кластерная картографическая визуализация всех запусков системы «Эйдос» в мире за период с 16.12.2016 по 04.06.2023: http://lc.kubagro.ru/map5.php



Численный пример решения задачи АПК в системе «Эйдос»: установка лабораторной работы 3.09 для изучения или применения

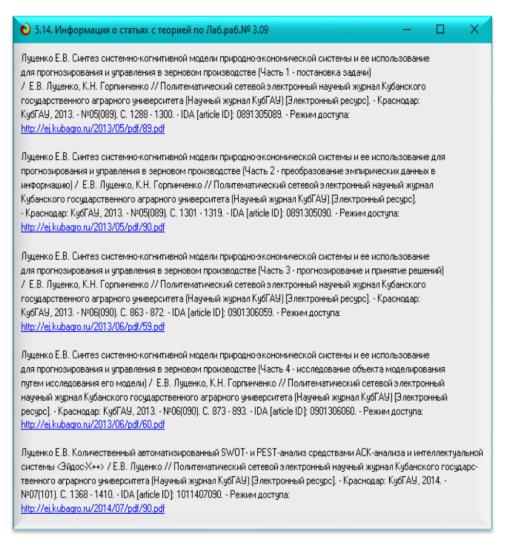
Установка локальной лабораторной работы 3.09.

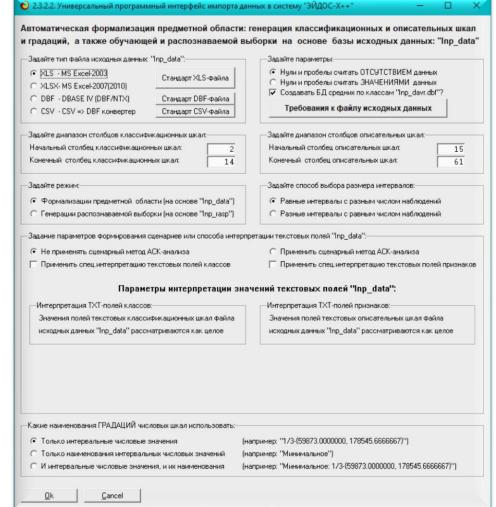
Установка интеллектуального облачного Эйдос-приложения 3.09.

Численный пример решения задачи АПК в системе «Эйдос»: Задача-1. Когнитивно-целевая структуризация предметной области

На этом этапе АСК-анализа разработчик интеллектуального Эйдос-приложения решает, что он рассматривает как объект моделирования, что как действующие на него факторы, а что как результаты действия этих факторов. Это первый и единственный не автоматизированный в системе «Эйдос» этап АСК-анализа. По сути этот этап представляет собой смысловую постановку задачи.

Классификационные шкалы


KOD_CLSC	NAME_CLSC
1	УРОЖАЙНОСТЬ, Ц/ГА
2	СОДЕРЖАНИЕ БЕЛКА, %
3	СОДЕРЖАНИЕ КЛЕЙКОВИНЫ,%
4	НАТУРА ЗЕРНА, Г/Л
5	СТОИМОСТЬ ЗЕРНА, РУБ./ГА
6	ЧИСТЫЙ ДОХ (УБЫТОК), РУБ./ГА
7	УРОВЕНЬ РЕНТАБЕЛЬНОСТИ (УБЫТОЧНОСТИ), %
8	ПРИРАЩЕНИЕ ЭНЕРГИИ, ГДЖ/ГА
9	К-Т ЧИСТОЙ ЭФФЕКТИВНОСТИ
10	К-Т ОТНОШЕНИЯ ПОЛУЧ. И ЗАТРАЧ. ЭНЕРГИИ
11	ВЫХОД ЗЕРНА В РАСЧЕТЕ НА 1 ГДЖ ЗАТРАЧ. ЭНЕРГИИ, КГ
12	ОКУПАЕМОСТЬ УДОБРЕНИЙ ЗЕРНОМ, КГ/КГ
13	ЦЕНА ЗЕРНА, РУБ./КГ


Описательные шкалы (факторы)

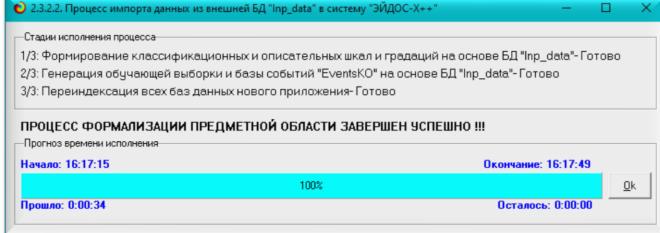
KOD_OPSC	NAME_OPSC
1	ПРЕДШЕСТВЕННИК
2	ДОЗА УДОБРЕНИЙ
3	CEBOOGOPOT
4	К-ВО ОСАДКОВ ЗА ГОД , ММ
5	К-ВО ОСАДКОВ НА ПЕРИОД ОСЕН. ВЕГ., ММ
6	К-ВО ОСАДКОВ НА ПЕРИОД ВЕСЛЕТ. ВЕГ., ММ
7	К-ВО ОСАДКОВ НА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ, ММ
8	СР. ТЕМПЕРАТУРА ЗА ГОД, °C
9	СР. ТЕМП. НА ПЕРИОД ОСЕН. ВЕГЕТАЦИИ, °C
10	СР. ТЕМП. НА ПЕРИОД ВЕСЛЕТНЕЙ ВЕГ., °C
11	СР. ТЕМП. ЗА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ
12	СОД-Е ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА ПЕРИОД СЕВА, ММ
13	СОД-Е ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА П-Д ВЕС. ВЕГ., ММ
14	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА П-Д ВЫХОДА В ТРУБКУ, ММ
15	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА П-Д КОЛШЕНИЯ, ММ
16	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА П-Д ПОЛН.СПЕЛ.И, ММ
17	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д СЕВА, ММ
18	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д ВЕС. ВЕГ., ММ
19	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д ВЫХОДА В ТРУБКУ, ММ
20	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д КОЛШЕНИЯ, ММ
21	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д ПОЛНОЙ СПЕЛОСТИ, ММ
22	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д СЕВА, ММ
23	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д ВЕС. ВЕГ., ММ
24	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д ВЫХОДА В ТРУБКУ, ММ
25	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА ПЕРИОД КОЛОШЕНИЯ, ММ
26	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д ПОЛНОЙ СПЕЛ., ММ
27	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА ПЕРИОД СЕВА, ММ
28	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА П-Д ВЕС. ВЕГ., ММ
29	СОД.Е ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА П-Д ВЫХОДА В ТРУБКУ, ММ
30	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА П-Д КОЛШЕНИЯ, ММ
31	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА П-Д ПОЛН. СПЕЛ., ММ
32	СОД. МИН.О АЗОТА В ПОЧВЕ НА НАЧАЛО ВЕС. ВЕГ.И, МГ/КГ
33	СОД. МИН. АЗОТА В ПОЧВЕ В ФАЗУ ВЫХ. РАСТ. В ТРУБКУ, МГ/КГ
34	СОД. МИН. АЗОТА В ПОЧВЕ В ФАЗУ КОЛОШ., МГ/КГ
35	СОД. МИН. АЗОТА В ПОЧВЕ В ФАЗУ ПОЛН. СПЕЛ., МГ/КГ
36	СОД. ФОСФАТОВ В 0-30 СМ СЛОЕ ПОЧВЫ НА НАЧ. ВЕСЕН. ВЕГ., МГ/КГ
37	СОД. ФОСФАТОВ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ ВЫХ. РАСТ. В ТРУБКУ, МГ/КГ
38	СОД-Е ФОСФАТОВ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ КОЛОШЕНИЯ, МГ/КГ
39	СОД-Е ФОСФАТОВ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ ПОЛН. СПЕЛ., МГ/КГ
40	СОД-Е КАЛИЯ В 0-30 СМ СЛОЕ ПОЧВЫ НА НАЧ.О ВЕС. ВЕГ., МГ/КГ
41	СОД-Е КАЛИЯ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ ВЫХ. РАСТ. В ТРУБКУ, МГ/КГ
42	СОД-Е КАЛИЯ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ КОЛОШ., МГ/КГ
43	СОД-Е КАЛИЯ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ ПОЛН. СПЕЛ., МГ/КГ
44	ВЫХОД ЭНЕРГИИ, ГДЖ/ГА
45	ЗАТРАТЫ НА УДОБРЕНИЯ, РУБ./ГА
46	ЗАГРАТЫ ПА УДОВРЕНИЛ, ГРВ./ГА ЗАТРАТЫ СОВОКУПНОЙ ЭНЕРГИИ, ГДЖ/ГА
47	ПРОИЗВОДСТВЕННЫЕ ЗАТРАТЫ, РУБ./ГА
47	III ONDO DE LINIUIE DATITATUI, E 20.41A

Численный пример решения задачи АПК в системе «Эйдос»: <u>Задача-2.</u> Формализация предметной области

Численный пример решения задачи АПК в системе «Эйдос»: **писательных шкал и градаций**

	АЛОГЕ РАЗМЕРНО ций классификационны			•	uavoel	
ип шкалы	Количество	Количество	Среднее	Количество	Количество	Среднее
	классифи-	градаций	количество	описательных	градаций	количество
	кационных	классифи-	градаций	шкал	описательных	градаций
	шкал	кационных	на класс.шкалу		шкал	на опис.шкалу
исловые	13	65	5,00	44	220	5,00
екстовые	0	0	0,00	3	15	5,00
CEFO:	13	65	5,00	47	235	5,00
	тво числовых диапазо ационных шкалах:	нов (интервалов, г		сательных шкалах:	5	
	калы и градации				Выйти на с	оздание модели

ринцип организации таблицы исходив	и данных					
Наименование объекта обучающей выборки	Наименование 1-й классификационной шкалы	Наименование 2-й классификационной шкалы		Наименование 1-й описательной шкалы	Наименование 2-й описательной шкалы	
-й объект обучающей выборки 1-е наблюдение)	Значение шкалы	Значение шкалы		Значение шкалы	Значение шкалы	***
-й объект обучающей выборки 2-е наблюдение)	Значение шкалы	Значение шкалы		Значение шкалы	Значение шкалы	
	***	***	***		***	***
(С) Универсальная когн	итивная аналитич	ieckas cuciema Si	пдос-	A++		
1 аб.раб.№ 3.09: "Автомати	зированный SWOT	-анализ и реинжині	иринг	бизнес процессо	в'' успешно устано	овле
			иринг	бизнес процессо	в" успешно устано	овле
Іля дальнейшего ее изучен	ия и выполнения н	еобходимо:	•		в" успешно устани	овле
Оля дальнейшего ее изучен Открыть файл исходных д	ия и выполнения н цанных: c:\Aidos:\V	eoбходимо: Aid_data\Inp_data\Ir	np_dal		в" успешно устано	овле
іля дальнейшего ее изучен Открыть файл исходных д Прочитать описание данн	ия и выполнения н цанных: c:\Aidos:\V ой лабораторной р	eoбходимо: Aid_data\Inp_data\Ir aботы в режиме 5.1	np_dal		в" успешно устано	овле
аб.раб.№ 3.09: "Автомати Для дальнейшего ее изучен . Открыть файл исходных д . Прочитать описание данн в Выполнить режимы: 2.1, з в соответствии со схемой п	ия и выполнения н цанных: c:\Aidos:\V ой лабораторной р. 2.2, 2.3.1, 3.5, 5.5, 3	eoбходинио: Aid_data\Inp_data\Ir aботы в режиние 5.1 4 и другие	np_dal		в" успешно устано	овле


данных "inp_data.xis" в систему "Зідоо×++" и формализации предметной области. - Данный програничный интерфейс обеспечивает формализацию предметной области, т.е. анализ файла исходных данных inp_data.xis(x) формирование классификационных и откостельных икал и градаций, а затех кодирование файла исходных с их использованием.

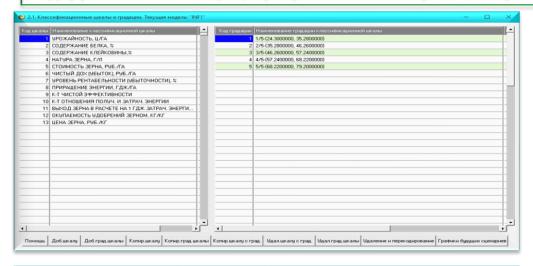
— по диа жизори на класическ должен инетельных исд. фаба.xd(x), а зайн располнаваемый выбории инеи. Игр., дакр. xd(x), файлы (пр., data.xd(x) и пр., дакр. xd(x), дакр. xd 1-а строка этого файла должна содержать навменовання колонок на любом завые, в т.ч. и русском. Эти навменовання должны быт всех колонках, при этом переносы по словам разрешены, а объединение ячеек, разрые строки энак абзаца не допускаются. Эти наи доляны бить коротивны, но понятными т. к. они будут в выходных формах, а к нем еще будут добавляться намененовным градацый. В часловых шкалах надо ОБЯЗАТЕЛЬНО указывать единецы немеренен и часло знакое после залятой в колоник доляно бить ОДИНАКОВОЕ. - 1-я колония содержит намененование объекта обучающий выборны или намененование наблюдения. Оно ножет бить диненьик до 255 сневолов - Кандая строка этого файла, наченая со 2-й, содержит данечье об одном объекте обучающей выборки или одном наблюдения. В МS Ехсеl-2003
 в листе может быть до 65536 строк и до 256 колонок. В листе MS Excel-2010 и более поздник возможно до 1048576 строк и 16384 колонок. - Столбцы, наченая со 2-го, являются классификационными и описательными шкалами и могут быть текстового (номенального / порядковог ним чеслового тыпа (с десептичення эниманы после запітой). - Столбцу присванвается чесловой тип, если все значения его ячеек чеслового типа. Если хотя бы одно значение является текстовы чеслом, в т.ч. пробелом), то стоябцу присванвается текстовый тип. Это означает, что нули должны быть указаны нуляни, а не пробелами.
- Стоябцы со 2-го по N-й являются классификационными шкалами (выходными параметрами) и содержат данные о классах (будущих сос

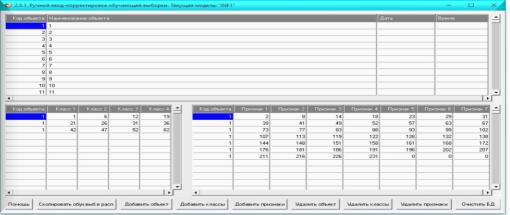
инсотельных шкал веляются СТРОКАМИ. Система формирует классификационные и описательные шкалы и градация. Для этого в каждом чис толбце система находит минемальное и максимальное числовые значения и формирует заданное количество числовых интервалсе, после чего часловые эначения заменяются их интервальными эначениями. В текстовых столбцах система находит уникальные текстовые эначения. Каждо УНИКАЛЬНОЕ интервальное часловое или текстовое эначение счетается градацией классификационной или описательной шкалы, характеризу объект. В каждой шкале ее градации сортируются по алфавиту. С использованием шкал и градаций кодируются исходные данные в результате чего генерируется обучающая выборка, каждый объект которой соответствует одной строке файла исходных данных NP_DATA и содержит коды классов, соответствующие фактам совтадения числовых или уникальных текстовых значений классов с градациями классификационных шкал и коды признаков, соответствующие фактам совпадения числовых или уныкальных текстовых значеный признаков с градациями описательных

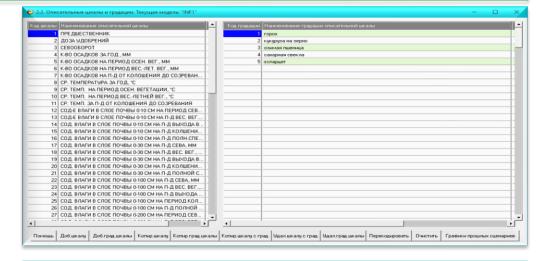
объекта управления), к которым принадлежат объекты обучающей выборки

- В результате работы режинна формируется фаял INP_NAME.TXT стандарта MS DOS (кириллица), в которон-

Исходные данные по задаче для АПК в стандарте API-2.3.2.2 системы «Эйдос» (фрагмент)

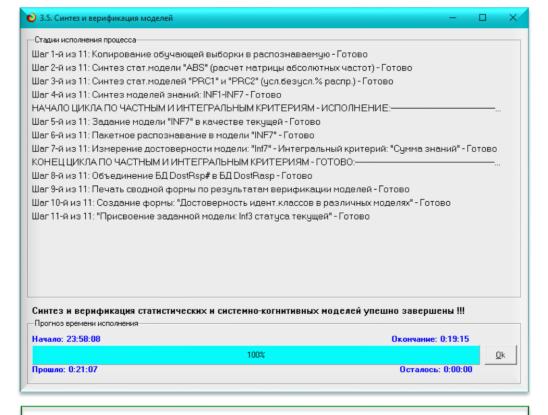

Column C	A		ВС	D	E	F	G	Н	1	J	K	1	L	M	N	0	P	Q	R	S	T	U	V	W	х	Y	Z	AA	AB	AC	AD	AE
Part	×	5 1	2 %	8	5	Ę.	5	Z %	2	2	2 2	×	보	로 보	¥	предшественник	Доза удобрений	Севооборот	К-во	K-80	K-80	К-во	Cp.	Ср. темп.	Ср. темп.	ср. темп.	Сод-е	Сод-е	Сод.	Сод.	Сод.	Сод.
March Marc	122	8	j i	Į,	9, 1	10	9	200,	1	۱ĕ	1 0	18	ž	F	6.				осадков	осаднов	осадков	осадков	темпера	на	на	за п-д от	влаги в					
Rectangle Rect	8	5 5	5 5	Z	표	g.	(g	190	18	8	1 2 4	12	da	ow,	D.				за год,	на	на	на п-д от	тура за	период	период	колошен	слое	слое	слое	слое	слое	слое
Part	, E	8	Ne N	Ž,	0.0	2	ě	9 5	2	1 5	1 ž	9	Ă	YA H	OH O				MM	период	период	колошен	год, °С	осен.	Bec	ия до	почвы 0-					
Part	Ť,	z z	¥ â	5	ξ.	30	D D	1 5	g-	ĕ	18	18	76	f K	36						100000000000000000000000000000000000000			вегетаци	летней	созреван	10 см на	30 см на				
Section Process Pro	0	章	e g	e Z	유	É	2	g 5	6.0	122	E .	18	B	O M	E E					вег., мм	вег., мм	созреван		и, °C	вег., °С	RN	период	п-д вес.	п-д	п-д	п-д	п-д сева,
Professor Pro	686	e l	000	T T		180	l ĝ	£	ž	Ę	à	1 2		Ja.	7							MM, RN					сева, мм	вег., мм	выхода в	колшен	полн.сп	MM
2 1 26 9 19 20 26477 -278 71 27 28 28 28 28 28 28 28	00	21	1	g g		2	22	00,) ří	I č	13	1 8		96															трубку,	мм, ям	ел.и, мм	
2 1 1 2 9 18 10 20 4547 3 18 10 18 19 18 10 20 4547 3 18 1 8 1 8 9 999718 18 18 10 8 999718 18 18 10 1	F F	Ē		100		ľ	P P	^	2 0	×	1 5	A																				
2 32 32 35 73 23 35 73 23 35 73 23 35 73 23 35 73 23 35 73 24 3 3 3 3 3 3 3 3 3	, ŏ	ő		1			2		Ě		\$	X S																				
3 2 12 8 16 792 1774 от 10% 4 5 184 0 5 струкура на верен на принопроващинай деринопроващинай деринопроващи	2	1 2	6 9	9 19	820	14471	-3776	-21	60	4	5	5 1	181	0	6	кукуруза на зерно	неудобренный	зернопропашный	613	165	201	159	12	10	17	21	9	19	13	12	7	35
8 29 10 17 206 15 15 15 15 15 15 15 1	3	2 3	2 8	8 16	792	17174	-1074	-6	75	4	5	1	184					зернопропашный	764	105	246	239	12	10	16	21	17	19	33	17	21	51
9 6 7 7 79 1338 - 300 0 7 78 1338 - 300 0 7 10 1 2 1 2 1 2 2 2 2 1 3 1 5 77 1347 - 30 1 4 1 4 5 1 50 0 1 8 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	3 2	9 10	0 17	826	15676	-2572	-14	68	4	5	1	174	0					733	189	143	241	12	12	16	22	19	23	15	0	8	36
8 6 31 12 13 77 78 3467 477 729 60 4 77 84 9 10 0 0 6 ууууулан ааруно неудобренный авриспропашный 625 92 207 204 12 14 18 22 13 22 13 25 17 12 13 17 80 80 77 20 18 8 78 78 78 78 78 78 78 78 78 78 78 78	5	4 2	_	_	_		-3909	-21	_	-	5	1	174							248	84	168	10	13	17	21		22	2	2	19	
7 6 26 11 17 783 46071 4177 227 80 6 4 15 5 161 00 5 рукуруза на верно неудобренений вернопропашний 625 92 207 204 12 14 18 21 3 25 17 12 19 8 18 15 79 18 20 804 81674 2072 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	5 3	1 12	2 19	771	17479	-768	-4	73	4	5	1	190						699	176	185	175	12	12	16	20	18	29	19	15	21	
9 8 8 35 9 19 808 19586 3639 14 74 13 4 14 4 6 кумуруза на верно редимя дов РК зернопропашный 613 165 201 159 12 10 17 22 9 19 19 13 12 17 7 10 9 4.7 8 14 7 10 10 43 10 18 62 237 14 7 10 16 22 17 7 19 33 17 22 19 10 16 22 17 19 33 17 22 11 10 16 22 19 22 15 0 18 10 10 10 10 10 10 10 10 10 10 10 10 10	7	6 2	6 11	1 17	783	14071	-4177	-23	60	4	5	1	161	0	5	кукуруза на зерно	неудобренный	зернопропашный	625	92	207	204	12	14	18	21	3	25	17	12	19	10
9 8 35 9 19 808 1940 305 1950 1950 1950 1950 1950 1950 1950 19	8	7 2	9 12	2 20	804	16174	-2073	-11	68	5	6	1	193	0	6	кукуруза на зерно	неудобренный	зернопропашный	499	83	166	172	11	13	17	20	3	24	17	1	10	15
11 10 43 10 18 826 2278 6 527 - 2 94 3 4 146 5 5 8 мужуруза на верно средияя дова РК вернопропашный 733 189 144 241 12 12 16 22 19 23 15 0 8 13 12 13 17 751 1870 1870 1870 1870 1870 1870 1870 187	9	8 3	5 9	9 19	808	19636	-3629	-16	74	3	4	1	134		100			зернопропашный	613	165	201	159	12	10	17	21	9	19	13	12	7	35
11 10 43 10 18 26 22788 5.57	10	9 4	2 8	8 14	786	22577	-687	-3	93	3	4	1	146	5	5	кукуруза на зерно	средняя доза РК	зернопропашный	764	105	246	239	12	10	16	21	17	19	33	17	21	51
12 11 33 9 17 803 17762 -5502 -24 68 2 3 121 4 5 кукуруза на верно (среджя доза РК вернопропашный 675 248 84 158 10 13 17 21 12 22 2 2 2 15 14 13 17 73 18030 -5235 -22 68 2 3 117 4 5 кукуруза на верно (среджя доза РК вернопропашный 675 248 84 158 10 13 17 21 12 12 12 12 12 12 12 12 12 12 12 12	11	10 4	3 10	0 18	826	22738	-527	-2	94	3	4	1	146					зернопропашный	733	189	143	241	12	12	16	22	19	23	15	0	8	36
14 13 34 11 17 791 18030 - 5235 - 23 68 2 3 117 4 5 кукуруза на зерно средняя доза РК зернопропашный 459 83 166 172 11 13 17 20 3 24 17 1 10 10 10 5 6 90 26603 4860 22 94 4 5 175 8 7 кукуруза на зерно средняя доза РК зернопропашный 459 83 166 172 11 13 17 20 3 24 17 1 10 10 10 10 26 000 26829 7088 33 122 5 6 207 8 6 кукуруза на зерно средняя доза РК зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21 18 17 33 10 20 830 18871 9071 - 14 75 4 5 167 5 6 кукуруза на зерно средняя доза РК зернопропашный 774 105 246 239 12 10 16 22 17 19 33 17 21 18 17 33 10 20 830 18871 9071 - 14 75 4 5 168 6 6 кукуруза на зерно средняя доза РК зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8 19 14 20 759 28882 2150 10 100 5 6 191 17 6 кукуруза на зерно средняя доза РК зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8 19 14 20 759 28882 2150 10 100 5 6 191 17 6 кукуруза на зерно средняя доза РК зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 10 10 10 10 5 6 191 17 6 кукуруза на зерно средняя доза РК зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	12	11 3	3 9	9 17	803	17762	-5502	-24	68	2	3	1	121					зернопропашный	675	248	84	168	10	13	17	21	12	22	2	2	19	50
15 14 30 12 19 797 16798 -6466 -28 58 2 3 109 3 6 кукуруза на зерно федмяя доза NK зернопропашный 489 83 166 172 11 13 17 20 3 24 17 1 10 10 16 15 40 10 26 809 26003 4862 22 94 4 5 175 8 7 кукуруза на зерно федмяя доза NK зернопропашный 613 165 201 159 12 10 17 21 99 19 13 12 77 13 31 02 830 18671 -30771 -14 75 4 5 167 5 6 кукуруза на зерно федмяя доза NK зернопропашный 673 189 143 241 12 12 16 22 19 23 15 0 8 19 18 83 10 22 790 19976 -1765 -8 81 4 5 168 6 6 кукуруза на зерно федмяя доза NK зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 19 22 19 23 15 0 10 10 10 10 10 10 10 10 10 10 10 10 1	13	12 3	6 11	1 16	773	19046	-4218	-18	76	3	4	1	133	4	5	кукуруза на зерно	средняя доза РК	зернопропашный	699	176	185	175	12	12	16	20	18	29	19	15	21	55
16 15 40 10 26 809 26603 4862 22 94 4 5 175 8 7 кукуруга на зерно средняя доза NK зернопропашный 613 165 201 159 12 10 17 21 9 19 13 12 7 16 51 9 18 802 2829 7088 33 12 5 6 207 8 6 кукуруга на зерно средняя доза NK зернопропашный 754 105 246 239 12 10 16 21 17 19 33 17 21 18 18 18 18 18 18 18 18 18 18 18 18 18	14	13 3	4 11	1 17	791	18030	-5235	-23	68	2	3	1	117	4	5	кукуруза на зерно	средняя доза РК	зернопропашный	625	92	207	204	12	14	18	21	3	25	17	12	19	10
17 16 51 9 18 802 28829 7088 33 12 5 6 207 8 6 кукуруза на зерно средняя доза NK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21 18 17 33 10 20 830 18671 -3071 -14 75 4 5 167 5 6 кукуруза на зерно средняя доза NK зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 19 23 15 00 88 19 14 4 20 759 28892 2150 10 100 5 6 191 7 6 кукуруза на зерно средняя доза NK зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 19 15 21 10 10 10 10 10 10 10 10 10 10 10 10 10	15	14 3	0 12	2 19	797	16798	-6466	-28	58	2	3	3 1	109	3	6	кукуруза на зерно	средняя доза РК	зернопропашный	499	83	166	172	11	13	17	20	3	24	17	1	10	15
18 17 33 10 20 830 18671 - 3071 - 14 75 4 5 167 5 6 кукуруза на зерно средняя доза NК зернопропашный 673 248 84 168 10 13 17 21 12 22 2 2 2 19 20 19 42 14 20 759 2387 11 10 10 5 6 191 7 6 кукуруза на зерно средняя доза NК зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 2 19 20 19 20 19 42 14 20 759 2387 11 10 7 4 5 189 7 5 кукуруза на зерно средняя доза NК зернопропашный 625 92 207 204 12 14 18 21 3 25 17 11 10 10 10 10 10 10 10 10 10 10 10 10	16	15 4	0 10	0 26	809	26603	4862	22	94	4	5	1	175	8	7	кукуруза на зерно	средняя доза NK	зернопропашный	613	165	201	159	12	10	17	21	9	19	13	12	7	35
19 18 35 10 22 790 19976 1765 -8 81 4 5 168 6 6 кукуруза на зерно средняя доза NK зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 19 20 19 19 15 21 10 10 10 5 6 191 7 6 кукуруза на зерно средняя доза NK зернопропашный 699 176 185 175 12 11 16 20 18 29 19 15 21 11 10 10 10 10 10 10 10 10 10 10 10 10	17	16 5	1 9	9 18	802	28829	7088	33	122	5	6	5 2	207	8	6	кукуруза на зерно	средняя доза NK	зернопропашный	764	105	246	239	12	10	16	21	17	19	33	17	21	51
20 19 42 14 20 759 23892 2150 10 10 5 6 191 7 6 кукуруза на зерно средняя доза NK зернопропашный 699 176 185 175 12 12 16 20 18 29 19 15 21 22 24 47 9 20 835 26559 2867 12 113 5 6 209 5 6 кукуруза на зерно средняя доза NP зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8 25 17 12 12 22 2 2 19 25 11 12 2 25 25 11 12 2 795 28943 5250 22 124 5 6 220 5 6 кукуруза на зерно средняя доза NP зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8 25 25 11 12 2 25 25 11 12 2 25 25 11 12 2 25 25 11 12 2 25 25 25 25 25 25 25 25 25 25 25 25	18	17 3	3 10	0 20	830	18671	-3071	-14	75	4	5	1	167	5	6	кукуруза на зерно	средняя доза NK	зернопропашный	733	189	143	241	12	12	16	22	19	23	15	0	8	36
21 20 45 11 18 781 24129 2387 11 107 4 5 189 7 5 кукуруза на зерно средняя доза NK зернопропашный 625 92 207 204 12 14 18 21 3 25 17 12 19 22 21 34 12 21 773 19125 -2617 -12 75 3 4 154 5 6 кукуруза на зерно средняя доза NK зернопропашный 499 83 166 172 11 13 17 20 3 24 17 1 10 23 22 52 10 27 837 33979 10286 43 126 5 6 223 6 7 кукуруза на зерно средняя доза NP зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21 25 24 47 9 20 835 26559 2867 12 113 5 6 209 5 6 кукуруза на зерно средняя доза NP зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8 22 25 11 12 773 25 25 25 25 11 12 773 25 25 25 25 25 25 25 25 25 25 25 25 25	19	18 3	5 10	0 22	790	19976	-1765	-8	81	4	5	1	168	6	6	кукуруза на зерно	средняя доза NK	зернопропашный	675	248	84	168	10	13	17	21	12	22	2	2	19	50
22 21 34 12 21 773 19125 2617 -12 75 3 4 154 5 6 кукуруза на зерно средняя доза NF зернопропашный 499 83 166 172 11 13 17 20 3 24 17 1 10 10 23 22 52 10 27 837 33979 10286 43 126 5 6 223 6 7 кукуруза на зерно средняя доза NP зернопропашный 613 165 201 159 12 10 17 21 9 19 13 12 7 12 12 12 12 12 14 15 15 15 12 15 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15	20	19 4	2 14	4 20	759	23892	2150	10	100	5	6	1	191	7	6	кукуруза на зерно	средняя доза NK	зернопропашный	699	176	185	175	12	12	16	20	18	29	19	15	21	55
23 22 52 10 27 837 33979 10286 43 126 5 6 223 6 7 кукуруза на зерно средняя доза NP зернопропашный 613 165 201 159 12 10 17 21 9 19 13 12 7 21 25 24 47 9 20 835 26559 2867 12 113 5 6 209 5 6 кукуруза на зерно средняя доза NP зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21 25 24 47 9 20 835 26559 2867 12 113 5 6 209 5 6 кукуруза на зерно средняя доза NP зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8 26 25 51 11 22 795 28943 5250 22 124 5 6 220 5 6 кукуруза на зерно средняя доза NP зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 19 27 26 53 13 20 773 30248 6556 28 130 5 6 221 6 6 кукуруза на зерно средняя доза NP зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 2 19 28 27 53 12 18 800 30078 6385 27 129 5 6 224 6 6 кукуруза на зерно средняя доза NP зернопропашный 625 92 207 204 12 14 18 21 3 29 19 15 21 29 29 28 43 14 24 780 28447 4755 20 101 4 5 180 5 7 кукуруза на зерно средняя доза NP зернопропашный 499 83 166 172 11 13 17 20 3 24 17 1 10 16 21 17 19 33 17 21 30 45 9 16 787 24182 2446 11 109 5 6 206 7 5 кукуруза на зерно минимальная доза NPK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21	21	20 4	5 11	1 18	781	24129	2387	11	107	4	5	1	189	7	5	кукуруза на зерно	средняя доза NK	зернопропашный	625	92	207	204	12	14	18	21	3	25	17	12	19	10
24 23 60 11 16 800 32207 8515 36 148 6 7 228 6 5 күкуруза на зерно средняя доза NP зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21 25 24 47 9 20 835 26559 2867 12 113 5 6 209 5 6 күкуруза на зерно средняя доза NP зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8 26 25 51 11 22 795 28943 5250 22 124 5 6 220 5 6 күкуруза на зерно средняя доза NP зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 19 23 15 0 8 27 26 53 13 20 773 30248 6556 28 130 5 6 221 6 6 күкуруза на зерно средняя доза NP зернопропашный 699 176 185 175 12 12 16 20 18 29 19 15 21 28 27 53 12 18 800 30078 6385 27 129 5 6 224 6 6 күкуруза на зерно средняя доза NP зернопропашный 625 92 207 204 12 14 18 21 3 25 17 12 19 29 28 43 14 24 780 28447 4755 20 101 4 5 180 5 7 күкуруза на зерно средняя доза NP зернопропашный 499 83 166 172 11 13 17 20 3 24 17 1 10 30 29 35 9 19 807 19863 -1874 -9 82 4 5 187 6 6 күкуруза на зерно минимальная доза NPK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21	22	21 3	4 12	2 21	773	19125	-2617	-12	75	3	4	1	154	5	6	кукуруза на зерно	средняя доза NK	зернопропашный	499	83	166	172	11	13	17	20	3	24	17	1	10	15
25 24 47 9 20 835 26559 2867 12 113 5 6 209 5 6 кукуруза на зерно (редняя доза NP) зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8 8 25 51 11 22 75 28943 5250 22 124 5 6 220 5 6 кукуруза на зерно (редняя доза NP) зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 19 23 15 0 8 25 53 13 20 773 30248 6556 28 130 5 6 221 6 6 кукуруза на зерно (редняя доза NP) зернопропашный 699 176 185 175 12 12 16 20 18 29 19 15 21 28 27 53 12 18 800 30078 6385 27 129 5 6 224 6 6 кукуруза на зерно (редняя доза NP) зернопропашный 625 92 207 204 12 14 18 21 3 25 17 12 19 29 28 43 14 24 780 28447 4755 20 101 4 5 180 5 7 кукуруза на зерно (редняя доза NP) зернопропашный 499 83 166 172 11 13 17 20 3 24 17 1 10 30 29 35 9 19 807 19863 1874 9 82 4 5 187 6 6 кукуруза на зерно минимальная доза NPK зернопропашный 613 165 201 159 12 10 16 21 17 19 33 17 21 31 30 45 9 16 787 24182 2446 11 109 5 6 206 7 5 кукуруза на зерно минимальная доза NPK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21	23	22 5	2 10	0 27	837	33979	10286	43	126	5	6	2	223	6	7	кукуруза на зерно	средняя доза NP	зернопропашный	613	165	201	159	12	10	17	21	9	19	13	12	7	35
26 25 51 11 22 75 28943 5250 22 124 5 6 220 5 6 кукуруза на зерно (редняя доза NP) зернопропашный 675 248 84 168 10 13 17 21 12 22 2 2 2 19 2 2 19 2 2 2 19 2 2 2 19 2 2 2 19 2 2 2 2	24	23 6	0 11	1 16	800	32207	8515	36	148	6	7	7 2	228	6	5	кукуруза на зерно	средняя доза NP	зернопропашный	764	105	246	239	12	10	16	21	17	19	33	17	21	51
27 26 53 13 20 773 30248 6556 28 130 5 6 221 6 6 кукуруза на зерно Средняя доза NP зернопропашный 699 176 185 175 12 12 16 20 18 29 19 15 21 28 27 53 12 18 800 30078 6385 27 129 5 6 224 6 6 кукуруза на зерно Средняя доза NP зернопропашный 625 92 207 204 12 14 18 21 3 25 17 12 19 29 28 43 14 24 780 28447 4755 20 101 4 5 180 5 7 кукуруза на зерно Средняя доза NP зернопропашный 499 83 166 172 11 13 17 20 3 24 17 1 10 30 29 35 9 19 807 19863 1874 9 82 4 5 187 6 6 кукуруза на зерно минимальная доза NPK зернопропашный 613 165 201 159 12 10 16 21 17 19 33 17 21 31 30 45 9 16 787 24182 2446 11 109 5 6 206 7 5 кукуруза на зерно минимальная доза NPK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21	25	24 4	7 9	9 20	835	26559	2867	12	113	5	6	2	209	5	6	кукуруза на зерно	средняя доза NP	зернопропашный	733	189	143	241	12	12	16	22	19	23	15	0	8	36
28 27 53 12 18 800 30078 6385 27 129 5 6 224 6 6 6 кукуруза на зерно (редняя доза NP зернопропашный 625 92 207 204 12 14 18 21 3 25 17 12 19 20 28 43 14 24 780 28447 4755 20 101 4 5 180 5 7 кукуруза на зерно (редняя доза NP зернопропашный 499 83 166 172 11 13 17 20 3 24 17 1 10 30 29 35 9 19 807 19863 1874 9 82 4 5 187 6 6 кукуруза на зерно минимальная доза NPK зернопропашный 613 165 201 159 12 10 16 21 17 19 33 17 21 31 30 45 9 16 787 24182 2446 11 109 5 6 206 7 5 кукуруза на зерно минимальная доза NPK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21	26	25 5	1 11	1 22	795	28943	5250	22	124	5	6	2	220	5	6	кукуруза на зерно	средняя доза NP	зернопропашный	675	248	84	168	10	13	17	21	12	22	2	2	19	50
29 28 43 14 24 780 28447 4755 20 101 4 5 180 5 7 кукуруза на зерно (редняя доза NP зернопропашный 499 83 166 172 11 13 17 20 3 24 17 1 10 30 29 35 9 19 807 19863 1874 9 82 4 5 187 6 6 кукуруза на зерно минимальная доза NPK зернопропашный 613 165 201 159 12 10 17 21 9 19 13 12 7 31 30 45 9 16 787 24182 2446 11 109 5 6 206 7 5 кукуруза на зерно минимальная доза NPK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21	27	26 5	3 13	3 20	773	30248	6556	28	130	5	6	5 2	221	6	6	кукуруза на зерно	средняя доза NP	зернопропашный	699	176	185	175	12	12	16	20	18	29	19	15	21	55
30 29 35 9 19 807 19863 -1874 -9 82 4 5 187 6 6 күкүрүза на зерно минимальная доза NPK зернопропашный 613 165 201 159 12 10 17 21 9 19 13 12 7 31 30 45 9 16 787 24182 2446 11 109 5 6 206 7 5 күкүрүза на зерно минимальная доза NPK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21	28	27 5	3 12	2 18	800	30078	6385	27	129	5	6	5 2	224	6	6	кукуруза на зерно	средняя доза NP	зернопропашный	625	92	207	204	12	14	18	21	3	25	17	12	19	10
31 30 45 9 16 787 24182 2446 11 109 5 6 206 7 5 кукуруза на зерно минимальная доза NPK зернопропашный 764 105 246 239 12 10 16 21 17 19 33 17 21	29	28 4	3 14	4 24	780	28447	4755	20	101	4	5	1	180	5	7	кукуруза на зерно	средняя доза NP	зернопропашный	499	83	166	172	11	13	17	20	3	24	17	1	10	15
	30	29 3	5 9	9 19	807	19863	-1874	-9	82	4	5	1	187	6	6	кукуруза на зерно	минимальная доза NPK	зернопропашный	613	165	201	159	12	10	17	21	9	19	13	12	7	35
	31	30 4	5 9	9 16	787	24182	2446	11	109	5	6	2	206	7	5	кукуруза на зерно	минимальная доза NPK	зернопропашный	764	105	246	239	12	10	16	21	17	19	33	17	21	
32 31 44 10 18 835 23433 1697 8 105 5 6 205 7 5 кукукруза на зерно минимальная доза NPK зернопропашный 733 189 143 241 12 12 16 22 19 23 15 0 8	32	31 4	4 10	0 18	835	23433	1697	8	105	5	6	5 2	205	7	5	кукуруза на зерно	минимальная доза NPK	зернопропашный	733	189	143	241	12	12	16	22	19	23	15	0	8	36


Исходные данные предоставлены доктором экономических наук, профессором Горпинченко Ксенией Николаевной



Численный пример решения задачи АПК в системе «Эйдос»: Задача-2. Формализация предметной области

На этом этапе АСК-анализа разрабатываются классификационные и описательные шкалы и градации и исходные данные кодируются с их помощью, в результате чего получается обучающая выборка (нормализованная база исходных данных).



Численный пример решения задачи АПК в системе «Эйдос»: <u>Задача-3</u>. Синтез статистических и системно-когнитивных моделей

3.5. Синтез и верификация моделей	- 🗆 X
Задайте модели для синтеза и верификации	—Текущая модель—
Статистические базы:	
▼ 1. ABS - частный критерий: количество встреч сочетаний: "класс-признак" у объектов обуч.выборки	C 1. ABS
Задайте источник данных для расчета модели ABS:	
© Обучающая выборка С Abs. С Prc1 С Prc2 С Inf1. С Inf2. С Inf3. С Inf4. С Inf5. С Inf6. С Inf7.	
Задайте значение фона в матрице абсолютных частот: 0 , 0000000 Помощь	
▼ 2. PRC1 - частный критерий: усл. вероятность і-го признака среди признаков объектов і-го класса	C 2. PRC1
▼ 3. PRC2 - частный критерий: условная вероятность і-го признака у объектов і-го класса	C 3. PRC2
Системно-когнитивные модели (базы знаний):	
	C 4. INF1
▼ 5. INF2 - частный критерий: количество знаний по А.Харкевичу; вероятности из PRC2	C 5. INF2
▼ 6. INF3 - частный критерий: Хи-квадрат, разности между фактическими и ожидаемыми абс. частотами	€ 6. INF3
7. INF4 - частный критерий: ROI (Return On Investment); вероятности из PRC1	C 7. INF4
✓ 8. INF5 - частный критерий: ROI (Return On Investment); вероятности из PRC2	C 8. INF5
9. INF6 - частный критерий: разн.усл.и безусл. вероятностей; вероятности из PRC1	C 9. INF6
▼ 10.INF7 - частный критерий: разн.усл.и безусл.вероятностей; вероятности из PRC2	C 10.INF7
Параметры копирования обучающей выборки в распознаваемую (бутстрепный подход):	
Какие объекты обуч.выборки копировать: Пояснение по алгоритму верификации	Для каждой заданной
 Копировать всю обичающию выборки 	модели выполнить:
С Копировать только текущий объект	Синтез и верификацию
С Копировать каждый N-й объект	С Только верификацию
С Копировать N случайных объектов	С Только синтез
○ Копировать объекты от N1 до N2 (fastest)	
 Вообще не менять распознаваемую выборку 	Задайте процессор-
Удалять из обуч. выборки скопированные объекты: Подробнее	Задайте алгоритм:
 Не удалять Измеряется внутренняя достоверн. модели 	Классика - дольше
С Удалять	С Упрощенно-быстрее
Использование только наиболее достоверных результатов распознавания: Rasp.dbf и целесобразность применения Расчетный размер БД результатов распознавания Rasp.dbf равен 1456194 байт, т.е.: 0.0678093 % от МАХ-возможно УЧИТЫВАТЬ только наиболее достоверные результаты распознавания с МОДУЛЕМ инт.крит. "Резонанс знаний" в В примении бутстрепного подхода нет необходимости. Синтез и верификация моделей будут выполнены на основе в	го, (от 2Гб) ыше 5,0000000 %
<u>Q</u> k <u>Cancel</u>	

Если на компьютере графический процессор видеокарты поддерживает язык OpenGL (обычно это так для видеокарт и графических ядер на чипсете NVIDEA), то есть прямой смысл проводить расчеты на графическом процессоре. Это может сэкономить время до нескольких тысяч раз, по разному, в зависимости от размерности модели (числа классов и значений факторов), количества объектов распознаваемой выборки и среднего количества признаков, описывающих эти объекты.

Фрагмент статистической модели **ABS**

						-		-	
	Наименование описательной шкалы и градации	1. УРОЖАЙНОС Ц/ГА 1/5 (24.3, 35.3)	2. 9РОЖАЙНОС Ц/ГА 2/5 {35.3, 46.3}	з. 9РОЖАЙНОС Ц/ГА 3/5 {46.3, 57.2}	4. 9РОЖАЙНОС Ц/ГА 4/5 (57.2, 68.2)	5. 9РОЖАЙНОС Ц/ГА 5/5 (68.2, 79.2)	ь. СОДЕРЖАНИЕ БЕЛКА. % 1/5 (7.1, 8.7)	7. СОДЕРЖАНИЕ БЕЛКА, % 2/5 (8.7, 10.3)	8. СОДЕР: БЕЛКА, 3/5 (10.3, 12.0)
1.0	ПРЕДШЕСТВЕННИК-горок	8.0	18.0	23.0	43.0	20.0	2.0	14.0	
2.0	ПРЕДШЕСТВЕННИК-кукуруза на зерно	16.0	12.0	11.0	16.0	1.0	5.0	15.0	
3.0	ПРЕДШЕСТВЕННИК-озимая пшеница	5.0	28.0	43.0	30.0	6.0		20.0	
4.0	ПРЕДШЕСТВЕННИК-сахарная свекла	24.0	23.0	35.0	25.0	5.0	17.0	37.0	
5.0	ПРЕДШЕСТВЕННИК-эспарцет	3.0	3.0	11.0	29.0	10.0		3.0	
6.0	ДОЗА УДОБРЕНИЙ-высокая доза NPK			16.0	31.0	9.0		2.0	
7.0	ДОЗА УДОБРЕНИЙ-минимальная доза NPK	6.0	20.0	11.0	16.0	3.0	5.0	17.0	
8.0	ДОЗА УДОБРЕНИЙ неудобренный	26.0	15.0	9.0	6.0		6.0	19.0	
9.0	ДОЗА УДОБРЕНИЙ-повышенная доза NPK	1.0		14.0	31.0	10.0		2.0	
10.0	ДОЗА УДОБРЕНИЙ-средняя доза NK	12.0	21.0	10.0	12.0	1.0	4.0	13.0	
11.0	ДОЗА УДОБРЕНИЙ-средняя доза NP		9.0	26.0	14.0	7.0		8.0	
12.0	ДОЗА УДОБРЕНИЙ-средняя доза NPK			27.0	21.0	8.0	2.0	11.0	
13.0	ДОЗА УДОБРЕНИЙ-средняя доза РК	11.0	19.0	10.0	12.0	4.0	7.0	17.0	
14.0	СЕВООБОРОТ-зернопропашный	37.0	47.0	59.0	63.0	18.0	16.0	56.0	
15.0	СЕВООБОРОТ-Зернотравянопропашный	19.0	37.0	64.0	80.0	24.0	8.0	33.0	
16.0	К-ВО ОСАДКОВ ЗА ГОД , ММ-1/5-{499.2000000, 552.2000000}	21.0	11.0	23.0	9.0				
17.0	К-ВО ОСАДКОВ ЗА ГОД , ММ-2/5-{552.2000000, 605.2000000}								
18.0	К-ВО ОСАДКОВ ЗА ГОД , ММ-3/5-{605.2000000, 658.2000000}	12.0	34.0	33.0	47.0	2.0	4.0	23.0	
19.0	К-ВО ОСАДКОВ ЗА ГОД , ММ-4/5-(658.2000000, 711.2000000)	17.0	25.0	34.0	51.0	1.0	1.0	23.0	

Фрагмент статистической модели **PRC2**

а	Наименование описательной	1.	2.	3.	4.	5.	6.	7.	8.	9.
 изнака	шкалы и градации	9РОЖАЙН Ц/ГА 1/5 (24.3, 35.3)	УРОЖАЙН Ц/ГА 2/5 (35.3, 46.3)	9РОЖАЙН Ц/ГА 3/5 (46.3, 57.2)	9РОЖАЙН Ц/ГА 4/5 (57.2, 68.2)	9РОЖАЙН Ц/ГА 5/5 (68.2, 79.2)	СОДЕРЖА БЕЛКА, % 1/5 (7.1, 8.7)	СОДЕРЖА БЕЛКА, % 2/5 (8.7. 10.3)	COJEPKA BEJIKA, % 3/5 (10.3, 12.0)	СОДЕРЖА БЕЛКА, % 4/5 (12.0, 13.6)
1.0	ПРЕДШЕСТВЕННИК-горок	14.286	21.429	18.699	30.070	47.619	8.333	15.730	28.421	25.610
2.0	ПРЕДШЕСТВЕННИК-кукуруза на зерно	28.571	14.286	8.943	11.189	2.381	20.833	16.854	13.684	7.317
3.0	ПРЕДШЕСТВЕННИК-озимая пшеница	8.929	33.333	34.959	20.979	14.286		22.472	25.263	30.488
4.0	ПРЕДШЕСТВЕННИК-сахарная свекла	42.857	27.381	28.455	17.483	11.905	70.833	41.573	15.789	20.732
5.0	ПРЕДШЕСТВЕННИК-эспарцет	5.357	3.571	8.943	20.280	23.810		3.371	16.842	15.854
6.0	ДОЗА УДОБРЕНИЙ-высокая доза NPK			13.008	21.678	21.429		2.247	11.579	23.171
7.0	ДОЗА УДОБРЕНИЙ-минимальная доза NPK	10.714	23.810	8.943	11.189	7.143	20.833	19.101	12.105	4.878
8.0	ДОЗА УДОБРЕНИЙ-неудобренный	46.429	17.857	7.317	4.196		25.000	21.348	10.000	7.317
9.0	ДОЗА УДОБРЕНИЙ-повышенная доза NPK	1.786		11.382	21.678	23.810		2.247	12.105	21.951
10.0	ДОЗА УДОБРЕНИЙ-средняя доза NK	21.429	25.000	8.130	8.392	2.381	16.667	14.607	11.579	12.195
11.0	ДОЗА УДОБРЕНИЙ-средняя доза NP		10.714	21.138	9.790	16.667		8.989	14.737	17.073
12.0	ДОЗА УДОБРЕНИЙ-средняя доза NPK			21.951	14.685	19.048	8.333	12.360	15.789	7.317
13.0	ДОЗА УДОБРЕНИЙ-средняя доза РК	19.643	22.619	8.130	8.392	9.524	29.167	19.101	12.105	6.098
14.0	СЕВООБОРОТ-зернопропашный	66.071	55.952	47.967	44.056	42.857	66.667	62.921	46.842	42.683
15.0	СЕВООБОРОТ-Зернотравянопропашный	33.929	44.048	52.033	55.944	57.143	33.333	37.079	53.158	57.317
16.0	K-BO OCAJKOB 3A FOJ., MM-1/5-{499.2000000, 552.2000000}	37.500	13.095	18.699	6.294				3.684	17.073
17.0	K-BO OCAJKOB 3A FOJJ, MM-2/5-{552.2000000, 605.2000000}									
18.0	K-BO OCAJKOB 3A FOJ., MM-3/5-{605.2000000, 658.2000000}	21.429	40.476	26.829	32.867	4.762	16.667	25.843	35.789	32.927
19.0	К-80 ОСАДКОВ ЗА ГОД , MM-4/5-{658.2000000, 711.2000000}	30.357	29.762	27.642	35.664	2.381	4.167	25.843	33.684	31.707

Фрагмент статистической модели INF1 (количество информации Александра Харкевича)

0д	Наименование описательной	1.	2.	3.	4.	5.	6.	7.
ризнака	шкалы и градации	9РОЖАЙНОСТЬ, Ц/ГА 1/5 {24.3, 35.3}	9РОЖАЙНОСТЬ, Ц/ГА 2/5 (35.3, 46.3)	УРОЖАЙНОСТЬ, Ц/ГА 3/5 (46.3, 57.2)	9РОЖАЙНОСТЬ, Ц/ГА 4/5 (57.2, 68.2)	9РОЖАЙНОСТЬ, Ц/ГА 5/5 (68.2, 79.2)	СОДЕРЖАНИЕ БЕЛКА, % 1/5 {7.1, 8.7}	СОДЕРЖАНИЕ БЕЛКА, % 2/5 {8.7. 10.3}
1.0	ПРЕДШЕСТВЕННИК-горок	-0.266	-0.071	-0.140	0.086	0.311	-0.534	-0.223
2.0	ПРЕДШЕСТВЕННИК-кукуруза на зерно	0.402	0.068	-0.162	-0.056	-0.799	0.241	0.144
3.0	ПРЕДШЕСТВЕННИК-озимая пшеница	-0.493	0.142	0.161	-0.087	-0.270		-0.051
4.0	ПРЕДШЕСТВЕННИК-сахарная свекла	0.263	0.047	0.062	-0.175	-0.358	0.497	0.24
5.0	ПРЕДШЕСТВЕННИК эспарцет	-0.405	-0.601	-0.162	0.230	0.311		-0.633
6.0	ДОЗА УДОБРЕНИЙ-высокая доза NPK			0.014	0.258	0.255		-0.832
7.0	ДОЗА УДОБРЕНИЙ-минимальная доза NPK	-0.075	0.310	-0.166	-0.060	-0.274	0.237	0.200
8.0	ДОЗА УДОБРЕНИЙ-неудобренный	0.670	0.209	-0.225	-0.495		0.363	0.292
9.0	ДОЗА УДОБРЕНИЙ-повышенная доза NPK	-0.939		-0.050	0.258	0.306		-0.832
10.0	ДОЗА УДОБРЕНИЙ-средняя доза NK	0.259	0.333	-0.212	-0.200	-0.804	0.129	0.070
11.0	ДОЗА УДОБРЕНИЙ-средняя доза NP		-0.076	0.248	-0.125	0.134		-0.164
12.0	ДОЗА УДОБРЕНИЙ-средняя доза NPK			0.266	0.070	0.198	-0.205	-0.010
13.0	ДОЗА УДОБРЕНИЙ-средняя доза РК	0.217	0.285	-0.212	-0.200	-0.136	0.399	0.200
14.0	СЕВООБОРОТ-зернопропашный	0.138	0.058	-0.020	-0.064	-0.074	0.134	0.11
15.0	СЕВООБОРОТ-Зернотравянопропашный	-0.184	-0.058	0.019	0.051	0.064	-0.200	-0.14
16.0	K-BO OCADKOB 3A FOD J., MM-1/5-{499.2000000, 552.2000000}	0.469	-0.039	0.129	-0.398			
17.0	K-BO OCADKOB 3A FOD J., MM-2/5-(552.2000000, 605.2000000)							
18.0	K-BO OCADKOB 3A FOD , MM-3/5-(605.2000000, 658.2000000)	-0.135	0.171	-0.031	0.065	-0.864	-0.265	
19.0	К-ВО ОСАДКОВ ЗА ГОД , ММ-4/5-(658.2000000, 711.2000000)	0.033	0.023	-0.016	0.104	-1.198	-0.933	-0.048

Фрагмент статистической модели INF3 (хи-квадрат Карла Пирсона)

og.	Наименование описательной	1.	2.	3.	4.	5.	6.	7.
ризнака	шкалы и градации	9РОЖАЙНОСТЬ, Ц/ГА 1/5 {24.3, 35.3}	⊌РОЖАЙНОСТЬ, Ц/ГА 2/5 (35.3, 46.3)	9РОЖАЙНОСТЬ, Ц/ГА 3/5 (46.3, 57.2)	УРОЖАЙНОСТЬ, Ц/ГА 4/5 (57.2, 68.2)	9РОЖАЙНОСТЬ, Ц./ТА 5/5 (68.2, 79.2)	СОДЕРЖАНИЕ БЕЛКА, % 1/5 (7.1, 8.7)	СОДЕРЖАНИЕ БЕЛКА, % 2/5 (8.7, 10.3)
1.0	ПРЕДШЕСТВЕННИК-горох	-5.894	-2.843	-7.748	7.058	9.506	-4.058	-8.237
2.0	ПРЕДШЕСТВЕННИК-кукуруза на зерно	9.048	1.571	-4.385	-1.983	-4.251	1.969	3.874
3.0	ПРЕДШЕСТВЕННИК-озимая пшеница	-8.903	7.143	12.230	-5.967	-4.502	-6.062	-2.253
4.0	ПРЕДШЕСТВЕННИК-сахарная свекла	10.097	2.143	4.230	-10.967	-5.502	10.938	14.747
5.0	ПРЕДШЕСТВЕННИК-эспарцет	-3.952	-7.429	-4.385	11.017	4.749	-3.031	-8.126
6.0	ДОЗА УДОБРЕНИЙ-высокая доза NPK	-7.019	-10.530	0.466	12.842	3.698	-3.060	-9.234
7.0	ДОЗА УДОБРЕНИЙ-минимальная доза NPK	-1.009	9.484	-4.513	-2.133	-2.295	1.944	5.781
8.0	ДОЗА УДОБРЕНИЙ-неудобренный	19.521	5.280	-5.339	-10.761	-4.894	3.175	8.630
9.0	ДОЗА УДОБРЕНИЙ-повышенная доза NPK	-6.019	-10.530	-1.534	12.842	4.698	-3.060	-9.234
10.0	ДОЗА УДОБРЕНИЙ-средняя доза NK	4.981	10.470	-5.534	-6.158	-4.302	0.940	1.766
11.0	ДОЗА УДОБРЕНИЙ-средняя доза NP	-7.019	-1.530	10.466	-4.158	1.698	-3.060	-3.234
12.0	ДОЗА УДОБРЕНИЙ-средняя доза NPK	-7.019	-10.530	11.466	2.842	2.698	-1.060	-0.234
13.0	ДОЗА УДОБРЕНИЙ-средняя доза РК	3.981	8.470	-5.534	-6.158	-1.302	3.940	5.766
14.0	СЕВООБОРОТ-зернопропашный	9.203	5.299	-2.518	-8.908	-2.996	3.880	11.510
15.0	СЕВООБОРОТ-Зернотравянопропашный	-8.806	-4.715	2.460	8.067	2.997	-4.124	-11.505
16.0	К-ВО ОСАДКОВ ЗА ГОД , ММ-1/5-{499.2000000, 552.2000000}	13.055	-0.919	5.417	-11.552	-6.001	-3.464	-12.716
17.0	К-ВО ОСАДКОВ ЗА ГОД , ММ-2/5-(552.2000000, 605.2000000)							
18.0	К-ВО ОСАДКОВ ЗА ГОД, ММ-3/5-(605.2000000, 658.2000000)	-3.889	10.163	-2.165	5.895	-10.002	-2.928	-2.432
19.0	К-BO OCAДКОВ ЗА ГОД , MM-4/5-{658.2000000, 711,2000000}	1.111	1.163	-1.165	9.895	-11.002	-5.928	-2.432

Численный пример решения задачи АПК в системе «Эйдос»: Принцип расчета статистических и системно-когнитивных моделей

Таблица 1	– Матр	ица абс	οл	ютных частот (с Классы	тат	истичесь	кая модель ABS)
		1		j		W	Сумма
88	1	N_{11}		N_{1j}		$N_{_{1W}}$	
odc							
Значения факторов	i	N_{i1}		N_{ij}		N_{iW}	$N_{i\Sigma} = \sum_{j=1}^W N_{ij}$
Ţ Ž							
Ē	М	$N_{ m M1}$		$N_{{\scriptscriptstyle M}\!{\scriptscriptstyle j}}$		$N_{\scriptscriptstyle MW}$	
Суммарное кол признаков п				$N_{\Sigma j} = \sum_{i=1}^{M} N_{ij}$			$N_{\Sigma\Sigma} = \sum_{i=1}^{W} \sum_{j=1}^{M} N_{ij}$
Суммарное кол объектов обу выборки п	/чающей			$N_{\scriptscriptstyle{\Sigma j}}$			$N_{\Sigma\Sigma} = \sum_{j=1}^{W} N_{\Sigma j}$

Численный пример решения задачи АПК в системе «Эйдос»: Принцип расчета статистических и системно-когнитивных моделей

Таблица 2 – Матрица условных и безусловных процентных распределений (статистические модели PRC1 и PRC2)

				_	Классы	_		Безусловная			
			1		j		W	вероятность признака			
	_	1	P_{11}		P_{1j}		P_{1W}				
Значения факторов вероятно класса											
	ачения фактор	i	P_{i1}		$P_{ij} = \frac{N_{ij}}{N_{\Sigma j}}$	-	P_{iW}	$P_{i\Sigma} = \frac{N_{i\Sigma}}{N_{\Sigma\Sigma}}$			
	3,4										
		М	$P_{ m M1}$		P_{Mj}		$P_{\scriptscriptstyle MW}$				
	роятн	ость			$P_{\Sigma j}$						

Численный пример решения задачи АПК в системе «Эйдос»: Принцип расчета статистических и системно-когнитивных моделей

Таблица 3– Различные аналитические формы частных критериев знаний, применяемые в АСК-анализе и систе	ие «Эйдос»
--	------------

Tuesting of the state of the st	II Primeristemble Briten					
Наименование модели знаний	Выраж	ение для частного критерия				
и частный критерий	Через относительные	Через абсолютные				
и частный критерии	частоты	частоты				
ABS , матрица абсолютных частот, <i>Nij</i> - фактическое число встреч <i>i-го</i> признака у объектов <i>j-го</i> класса; \overline{N}_{ij} -	$N_{ij} - факт$	ическая частота;				
теоретическое число встреч <i>i-го</i> признака у объектов <i>j-го</i> класса; <i>Ni</i> – суммарное количество признаков в <i>i-й</i> строке; <i>Nj</i> – суммарное количество признаков или объектов обучающей выборки в <i>j-м</i> классе; <i>N</i> – суммарное количество признаков по всей выборке (таблица 7)	$egin{aligned} N_i &= \sum_{j=1}^W N_{ij}; \ N_j &= \sum_{i=1}^M N_{ij}; \ N &= \sum_{i=1}^W \sum_{j=1}^M N_{ij}; \ \hline N_{ij} &= rac{N_i N_j}{N} - meopemuческая частота. \end{aligned}$					
PRC1 , матрица условных <i>Pij</i> и безусловных <i>Pi</i> процентных распределений, в качестве <i>Nj</i> используется	·	N N				
суммарное количество признаков по классу		$P = \frac{N_{ij}}{N_i} \cdot P = \frac{N_i}{N_i}$				
PRC2, матрица условных <i>Ріі</i> и безусловных <i>Рі</i> процентных распределений, в качестве <i>Nj</i> используется		$P_{ij} = \frac{N_{ij}}{N}; P_i = \frac{N_i}{N}$				
суммарное количество объектов обучающей выборки по классу		1, 1				
INF1, частный критерий: количество знаний по А.Харкевичу, 1-й вариант расчета вероятностей: Nj – суммарное						
количество признаков по ј-му классу. Вероятность того, что если у объекта ј-го класса обнаружен признак, то это	_	$I_{ij} = \Psi \times Log_2 \frac{N_{ij}}{\overline{N}_{ij}} = \Psi \times Log_2 \frac{N_{ij}N}{N_iN_j}$				
і-й признак	I . Which I and P_{ij}					
INF2, частный критерий: количество знаний по А.Харкевичу, 2-й вариант расчета вероятностей: Nj – суммарное	$I_{ij} = \Psi \times Log_2 \frac{P_{ij}}{P}$					
количество объектов по <i>ј-му</i> классу. Вероятность того, что если предъявлен объект <i>ј-го</i> класса, то у него будет	r_i					
обнаружен <i>i-й</i> признак.						
INF3, частный критерий: Хи-квадрат: разности между фактическими и теоретически ожидаемыми абсолютными		N N				
частотами		$I = N - \overline{N} = N - \frac{N_i N_j}{N_j}$				
ad-locality		$I_{ij} = N_{ij} - \overline{N}_{ij} = N_{ij} - \frac{N_i N_j}{N}$				
INF4, частный критерий: ROI - Return On Investment, 1-й вариант расчета вероятностей: Nj – суммарное						
количество признаков по ј-му классу	P_{ii} $P_{ij} - P_i$	$I_{ij} = \frac{N_{ij}}{\overline{N}_{ii}} - 1 = \frac{N_{ij}N}{N_iN_i} - 1$				
INF5, частный критерий: ROI - Return On Investment, 2-й вариант расчета вероятностей: Nj – суммарное	$I_{ij} = \frac{P_{ij}}{P} - 1 = \frac{P_{ij} - P_i}{P}$	$I_{ij} = \frac{9}{\overline{N}} - 1 = \frac{9}{\overline{N}} - 1$				
количество объектов по і-му классу	P_i P_i	$N_{ij} = N_i N_j$				
INF6, частный критерий: разность условной и безусловной вероятностей, 1-й вариант расчета вероятностей: Nj						
п ито , частный критерий, разность условной и оезусловной вероятностей, 1-и вариант расчета вероятностей. Лу — суммарное количество признаков по <i>j-му</i> классу		$N_{ii} N_{i} N_{ii} N - N_{ii} N$				
	$I_{ij} = P_{ij} - P_i$	$I_{ij} = \frac{N_{ij}}{N_i} - \frac{N_i}{N} = \frac{N_{ij}N - N_iN_j}{N_iN}$				
INF7, частный критерий: разность условной и безусловной вероятностей, 2-й вариант расчета вероятностей: Nj	, , ,	9 N_{j} N $N_{j}N$				
– суммарное количество объектов по <i>ј-му</i> классу						

Обозначения к таблице:

- і значение прошлого параметра;
- ј значение будущего параметра;
- Nij количество встреч j-го значения будущего параметра при i-м значении прошлого параметра;
- М суммарное число значений всех прошлых параметров:
- W суммарное число значений всех будущих параметров.
- Ni количество встреч i-м значения прошлого параметра по всей выборке;
- Nj количество встреч j-го значения будущего параметра по всей выборке;
- N количество встреч j-го значения будущего параметра при i-м значении прошлого параметра по всей выборке.
- будущего параметра;
- нормировочный коэффициент (Е.В.Луценко, 2002), преобразующий количество информации в формуле А.Харкевича в биты и обеспечивающий для нее соблюдение принципа соответствия с формулой Р.Хартли;
- Рі безусловная относительная частота встречи і-го значения прошлого параметра в обучающей выборке;
- Рії условная относительная частота встречи і-го значения прошлого параметра при ј-м значении будущего параметра.

Численный пример решения задачи АПК в системе «Эйдос»: Принцип расчета статистических и системно-когнитивных моделей

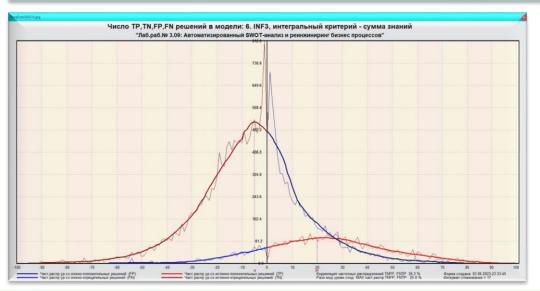
Таблица 4 — Матрица системно-когнитивной молели

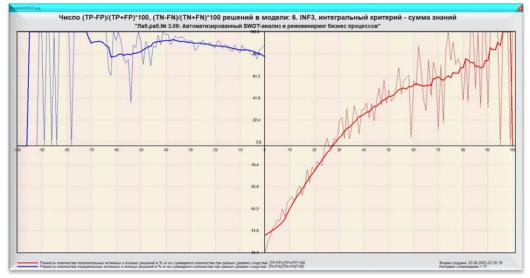
	auı	іица 4	_	viaipni	ца	CNCICIO	но-когнитивнои модели
				Классь	əl		Значимость
		1		j		W	фактора
9B	1	I_{11}		I_{1j}		$I_{_{1W}}$	$\sigma_{1\Sigma} = \sqrt[2]{\frac{1}{W-1} \sum_{j=1}^{W} (I_{1j} - \bar{I}_1)^2}$
g			Ш		Ш		
ения факт	i	I_{i1}	Ш	I_{ij}		I_{iW}	$\sigma_{i\Sigma} = \sqrt[2]{\frac{1}{W-1} \sum_{j=1}^{W} \left(I_{ij} - \bar{I}_{i}\right)^{2}}$
<u>ā</u>							
чения факторов	М	$I_{ m M1}$		I_{Mj}		$I_{\scriptscriptstyle MW}$	$\sigma_{M\Sigma} = \sqrt[2]{\frac{1}{W-1} \sum_{j=1}^{W} \left(I_{Mj} - \bar{I}_{M} \right)^{2}}$
редук	ции	$\sigma_{\scriptscriptstyle{\Sigma1}}$		$\sigma_{\scriptscriptstyle{\Sigma_j}}$		$\sigma_{_{\Sigma W}}$	$H = \sqrt[2]{\frac{1}{(W \cdot M - 1)} \sum_{j=1}^{W} \sum_{i=1}^{M} (I_{ij} - \bar{I})^{2}}$

Пояснения по смыслу частных и	интегральных критернев
Частн крит. 7 моделей зная	вий Инт.крит.: "Сучна знаний" Инт.крит.: "Резонанс знаний"
Описания лабораторных работ	
1 Паб работы истанавливан	емые путем КОПИРОВАНИЯ готовых баз данных учебного приложения:
Теория по Лаб.раб.Nº 1.01	Лаб.раб.№ 1.01: Прогноз пинктов назначения ж/д составов
Теорыя по Лаб раб N= 1.02	Лаб.раб.№ 1.02: Прогноз учебных достнокеный студентов на основе их нечиджа
Теорыя по Лаб.раб.№ 1.03	Лаб.раб.№ 1.03: Прогноз учебных достыженый студентов на основе их почерка
Теория по Лаб.раб.№ 1.04	Лаб.раб.№ 1.04: Прогноз учебн дост. студ. на основе их социального статуса
Теория по Лаб.раб.№ 1.05	Лаб.раб.№ 1.05: Идентификация трехмерных тел по их проекциям
Теория по Лаб.раб.№ 1.06	Лаб.раб.№ 1.06: Идентификация правильных тел Платона по их признакам
Теория по Лаб.раб.Nº 1.07	Лаб.раб.№ 1.07: Идентификация синволов по их признакам
Теория по Лаб.раб.N= 1.08	Лаб.раб.№ 1.08: Прогнозирование и принятие решений в растениеводстве
Теория по Лаб.раб.№ 1.09	Лаб.раб.№ 1.09: Идентификация респондентов по астрономическим данным
Теория по Лаб.раб.№ 1.10	Лаб.раб.№ 1.10: Идентификация места по признакам [на примере остановок транспорта]
2. Лаб.работы, устанавливае Теория по Лаб.раб.N ² 2.01	емые путем РАСЧЕТА исходных баз данных учебного приложения:
Теория по Лаб.раб.№ 2.02	Лаб.раб.№ 2.01: Исследование RND-модели, аналогичной текущей
Теория по Лаб.раб.№ 2.02	Лаб.раб.№ 2.02. Исследование свойств нат. чисел при разл. объемах выборки
Теория по Лаб.раб.№ 2.03	Лаб.раб.N= 2.03: Исследование детерминации свойств системы ее структурой
Теория по Лаб.раб.№ 2.04	Лаб.раб.№ 2.04: Исследованые зашумленных когнятивных Функций
Теория по Лаб.раб.№ 2.05	Лаб.раб.№ 2.05: Исследование нормального распределения
Теория по Лаб.раб.№ 2.06	Лаб.раб.№ 2.06: АСК-анализ изображений (на причере символов)
Теория по Лаб.раб.№ 2.07	Лаб.раб.№ 2.07: Оценка стоимости квартир по параметрам квартиры, дома и района
Теория по Лаб.раб.№ 2.09	Лаб.раб.№ 2.09: АСК-анализ числовых и символьных рядов, в т.ч. псевдослучаных чисел
Теория по Лаб.раб.№ 2.10	Лаб.раб.№ 2.09: Исследование RND-модели при различных объемах выборки
теориятно ластрасле 2.10	Лаб.раб.№ 2.10: в процессе разработки
3. Лаб.работы, устанавливае	емые путем ВВОДА из внешних баз данных с помощью программного интерфейса:
Теория по Лаб.раб.N= 3.01	Лаб.раб.№ 3.01: Идентификация слов по входящин в них буквам
Теория по Лаб.раб.Nº 3.02	Лаб.раб.№ 3.02: Атрибуция аноняечных и псевдоняечных текстов
Теория по Лаб.раб.Nº 3.03	Лаб.раб.№ 3.03: Идентификация предметов по их признакам
Теория по Лаб.раб.N# 3.04	Лаб.раб.№ 3.04: Оценка автомобилей с пробегом по их характеристикам
Теория по Лаб.раб.Nº 3.05	Лаб.раб.№ 3.05: Оценка стоимости квартир по параметрам квартиры, дома и района
Теория по Лаб.раб.Nº 3.06	Лаб.раб.Nº 3.06: Прогнозирование и принятие решений в зерновом производстве
Теория по Лаб.раб.N± 3.07	Лаб.раб.№ 3.07: Принятие решений по конфигурированию системы безопасности MS Window
Теория по Лаб.раб.Nº 3.08	Лаб.раб.№ 3.08: Управление номенклатурой и объемани реализации продукции (бентенаркин
Теория по Лаб.раб.Nº 3.09	Лаб.раб.№ 3.09: Автоматизированный SWOT-анализ и реинжиниринг бизнес процессов
Теория по Лаб.раб.Nt 3.10	Лаб раб № 3.10: Прогноз рисков ДТП и страховых выплат в системе ОСАГО (андеррайтинг)

Таблица 5– Конфигуратор с	системно-когн	нитивных моделей АС	К-анализа и интеллектуалы	ной системы «Эйдос»		
	Способ	Нормировка не	Нормировка к 0 путем взятия	Нормировка к 0 путем вычитания 1		
	сравнения требуется		логарифма	нормировка к о путем вычитания т		
	Путем		INF1, INF2, Александра	INF4, INF5, Коэффициент возврата		
Сравнение фактических и теоретических	деления		Харкевича	инвестиций ROI		
абсолютных частот	Путем	INF3, χ-квадрат Карла				
	вычитания	Пирсона				
	Путем		INF1, INF2, Александра	INF4, INF5, Коэффициент возврата		
Сравнение условных и безусловных	деления		Харкевича	инвестиций ROI		
относительных частот	Путем	INF6, INF7				
	вычитания	INTO, INF /				

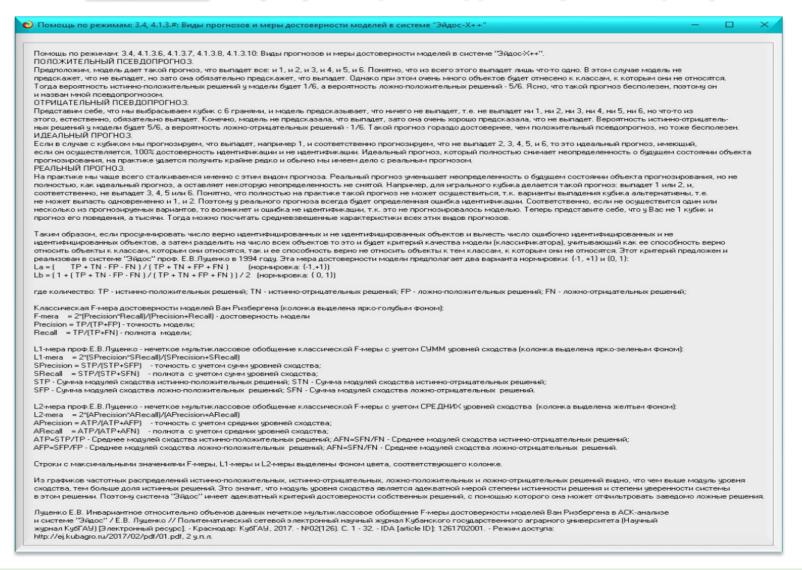
Подробнее с методикой численных расчетов статистических и системно-когнитивных моделей можно ознакомиться в хелпе режима 5.5 и в режиме 5.14 системы «Эйдос».

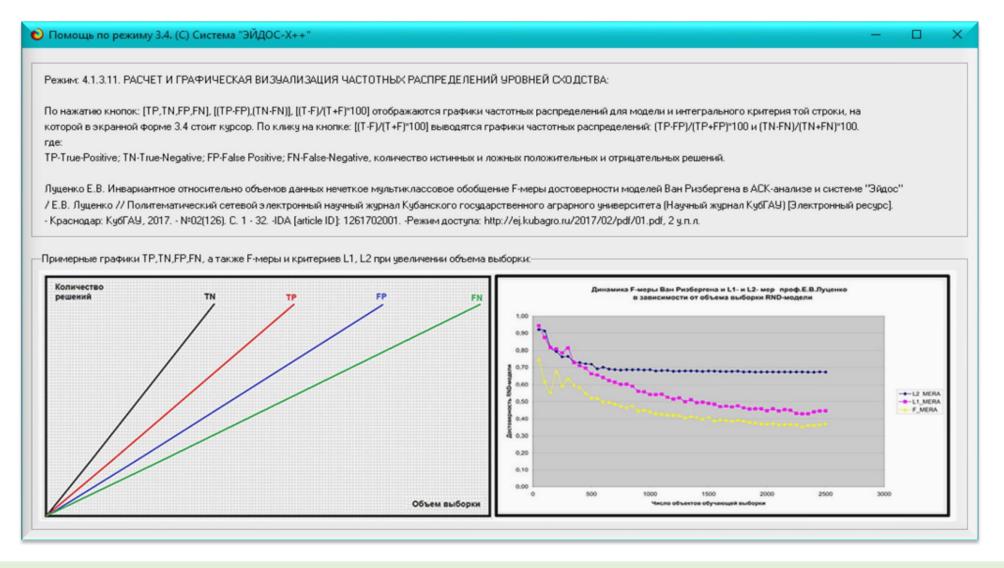



Численный пример решения задачи АПК в системе «Эйдос»: <u>Задача-4</u>. Верификация моделей (оценка достоверности)

													Ŀ
										модели			ш
					Ризбергена		истино-отриц	ложно-полож	ложно-отрицат.				а
ABS - частный критерий: количество встреч сочетаний: "клас	Корреляция абс частот с обр	1	0.210	1.000	0.347	решений (STP) 2895 . 490	решений (STN) 40.322	решений (SFP) 6922 . 403	решений (SFN) 0 . 115	0.295	1.000	0.455	4
ABS - частный критерий: количество встреч сочетаний: "клас ABS - частный критерий: количество встреч сочетаний: "клас	Попреляция асс.частот с обр Омена абс.частот по признак	1	0.210	1.000	0.347	2148.665	40.322	4183.604	0.115	0.295	1.000	0.455	-1
PRC1 - частный критерый; усл. вероятность і-го признака сред	Корреляция усл. отн. частот с. о	1	0.210	1.000	0.347	2895.490	40.322	6922.404	0.115	0.295	1.000	0.455	-1
PRC1 - частный критерий: усл. вероятность і-го признака сред	Сумма услоти частот по приз	-	0.204	1.000	0.339	2699.715	10.000	9233.376		0.226	1.000	0.369	-1
PRC2 - частный критерий: условная вероятность і-го признака	Корреляция усл. отн. частот с о	1	0.210	1.000	0.347	2895.486	40.322	6922.395	0.115	0.295	1.000	0.455	4
PRC2 - частный критерий: условная вероятность і го признака	Сумма услюти частот по приз		0.204	1.000	0.339	2684.514		9184.304		0.226	1.000	0.369	1
INF1 - частный критерий: количество знаний по А.Харкевичу; в	Семантический резонанс зна	1014	0.372	0.824	0.513	1322.639	3000.696	1462.192	130.137	0.475	0.910	0.624	4
INF1 - частный критерий: количество знаний по А.Харкевичу; в	Сугена знаний	1457	0.382	0.747	0.505	631.236	2890.940	1105.302	108.735	0.364	0.853	0.510	1
INF2 - частный критерий: количество знаний по А.Харкевичу; в	Семантический резонанс зна	1011	0.372	0.825	0.513	1319.760	2994.254	1460.025	129.795	0.475	0.910	0.624	1
INF2 - частный критерий: количество знаний по А.Харкевичу; в	Сумма знаний	1440	0.383	0.750	0.508	637.013	2919.124	1119.516	109.748	0.363	0.853	0.509	1
INF3 - частный критерий: Хинквадрат, разности между фактич	Семантический резонанс зна	1037	0.366	0.820	0.506	1598.066	2961.147	1749.316	146.274	0.477	0.916	0.628	1
INF3 - частный критерий: Хи-квадрат, разности между фактич	Оулема значий	1037	0.366	0.820	0.506	1467.128	2444.551	1128.321	150.898	0.565	0.907	0.696	ı
INF4 - частный критерий: ROI (Return On Investment); вероятно	Семантический резонанс зна	1356	0.410	0.765	0.534	1390.316	3691.878	1256.967	207.217	0.525	0.870	0.655	4
INF4 - частный критерий: ROI (Return On Investment); вероятно	Сулема знаний	903	0.312	0.843	0.456	591.800	677.638	1299.992	25.671	0.313	0.958	0.472	4
INF5 - частный критерий: R0I (Return On Investment); вероятно	Семантический резонанс зна	1353	0.411	0.765	0.535	1389.606	3690.565	1256.714	207.051	0.525	0.870	0.655	4
INF5 - частный критерий: ROI (Return On Investment); вероятно	Сулема знаний	889	0.313	0.846	0.457	586.525	672.172	1292.883	25.446	0.312	0.958	0.471	4
INF6 - частный критерий: разн.усл.и безусл.вероятностей; вер	Семантический резонанс зна	1120	0.363	0.806	0.501	1521.300	2967.830	1679.151	159.524	0.475	0.905	0.623	4
INF6 - частный критерий: разн.усл.и безусл.вероятностей; вер	Сумма знаний	1037	0.311	0.820	0.451	547.374	742.722	1385.726	29.534	0.283	0.949	0.436	-1
0.INF7 - частный критерий: разн.усл.и безусл.вероятностей; ве	Семантический резонанс зна	1105	0.364	0.808	0.502	1518.844	2961.937	1676.458	158.807	0.475	0.905	0.623	_1
0.INF7 - частный критерий: разн.усл.и безусл.вероятностей; ве	Однема знаний	1027	0.312	0.822	0.452	541.655	734.573	1376.313	29.084	0.282	0.949	0.435	4
		4											

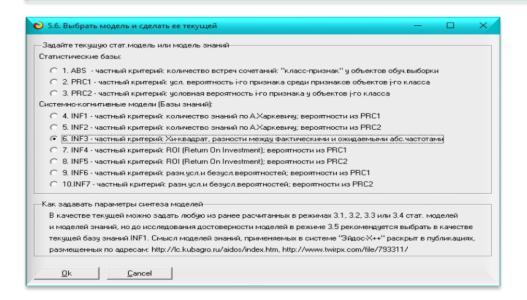
Из приведенных рисунков мы видим, что:

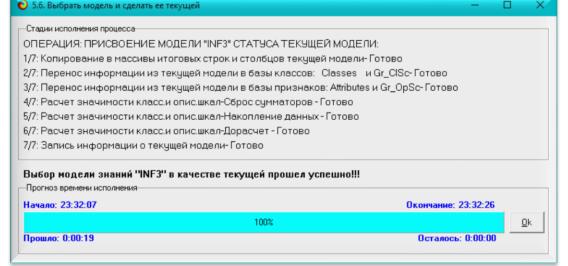

- 1. Для отрицательных решений при всех уровнях сходства доля истинных решений всегда больше, чем ложных.
- 2. Для положительных решений при низких уровнях сходства больше доля ложных решений, а при высоких выше доля истинных решений.
- 3. Чем выше уровень сходства, тем выше доля истинных решений. Это значит, что уровень сходства является адекватной мерой степени истинности решения и в системе есть адекватный внутренний критерий степени истинности решений.



Численный пример решения задачи АПК в системе «Эйдос»: Задача-4. Верификация моделей (помощь-1)

Численный пример решения задачи АПК в системе «Эйдос»: Задача-4. Верификация моделей (помощь-2)

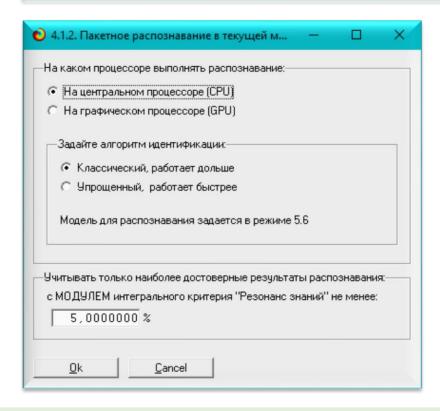



Численный пример решения задачи АПК в системе «Эйдос» <u>Задача-5</u>. Выбор наиболее достоверной модели

Выбор наиболее достоверной модели осуществляется разработчиком интеллектуального облачного Эйдос-приложения на основе информации, предоставляемой режимом 3.4, экранные формы которого представлены на слайде 22.

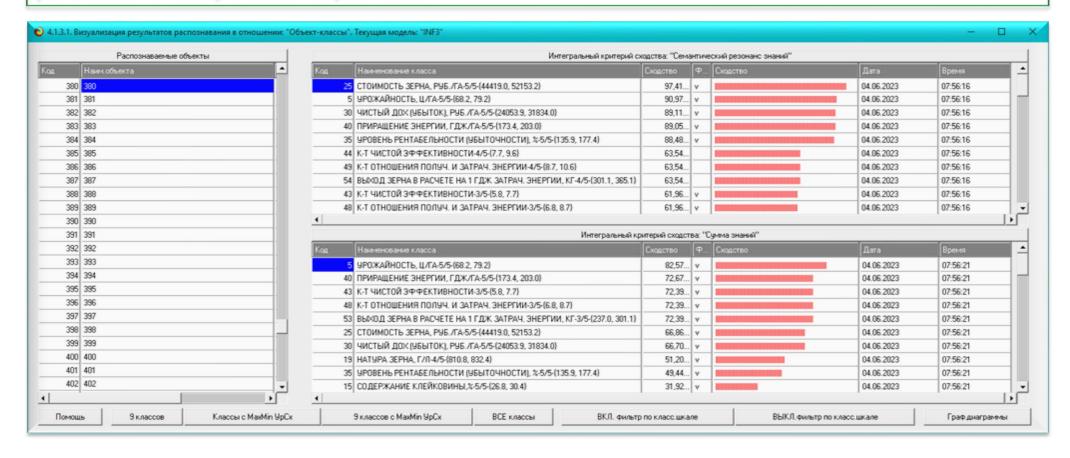
Задача-6. Системная идентификация и прогнозирование

Операция системной идентификации и прогнозирования является весьма трудоемкой в вычислительном отношении, т.к. каждый объект распознаваемой выборки сравнивается с каждым из классов по всем своим признакам (градациям описательных шкал). Поэтому в системе «Эйдос» эта операция осуществляется не для всех моделей, как обычно другие операции (за редким исключением), а в наиболее достоверной модели, заданной в качестве текущей. Задание модели в качестве текущей осуществляется в режиме 5.6 системы «Эйдос».

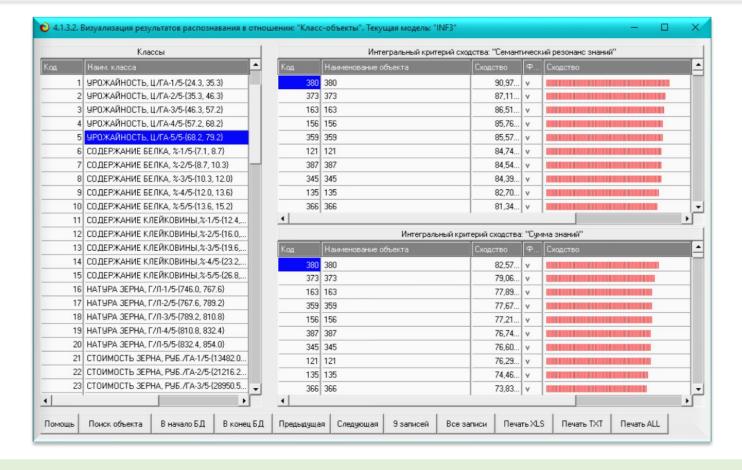


Численный пример решения задачи АПК в системе «Эйдос»: <u>Задача-6</u>. Системная идентификация и прогнозирование

Сами системная идентификация и прогнозирование осуществляется в режиме 4.1.2. Если на компьютере графический процессор видеокарты поддерживает язык OpenGL (это так для видеокарт и графических ядер на чипсете NVIDEA), то есть прямой смысл проводить расчеты на графическом процессоре. Это может сэкономить время до нескольких тысяч раз, по разному, в зависимости от числа классов и значений факторов, количества объектов распознаваемой выборки и среднего количества признаков, описывающих эти объекты. В нашем численном примере идентификация 448 объектов с 65 классами по 235 признакам и расчет 11 выходных форм на центральном процессоре і7 занял 2 минуты 4 секунды, а на графическом процессоре видеокарты GTX 770 - 28 секунд.

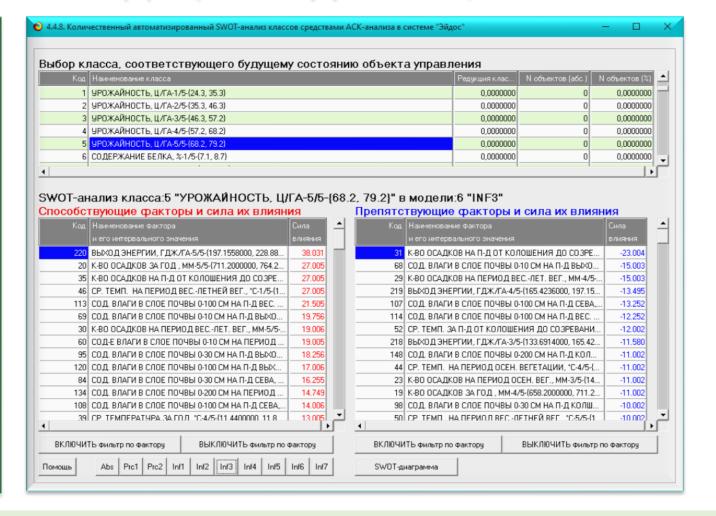


Численный пример решения задачи АПК в системе «Эйдос»: Задача-6. Системная идентификация и прогнозирование


Мы не будем приводить здесь все 11 выходных форм с результатами идентификации из-за ограниченности времени, а остановимся на двух наиболее востребованных формах: 4.1.3.1 и 4.1.3.2. «Птичкой» √ отмечены классы, к которым объект распознаваемой выборки относится фактически.

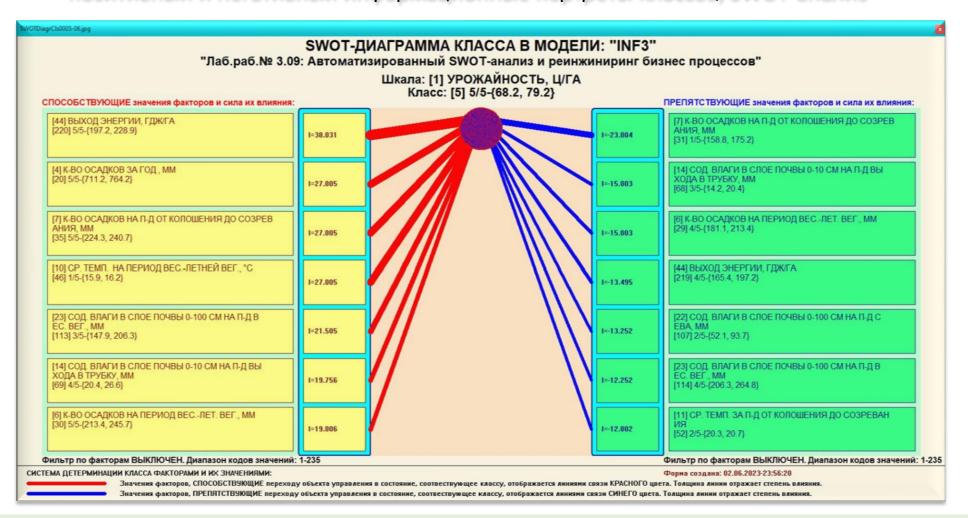
Численный пример решения задачи АПК в системе «Эйдос»: Задача-6. Системная идентификация и прогнозирование

Мы не будем приводить здесь все 11 выходных форм с результатами идентификации из-за ограниченности времени, а остановимся на двух наиболее востребованных формах: 4.1.3.1 и 4.1.3.2. «Птичкой» √ отмечены распознаваемой выборки, которые относятся к классу фактически.

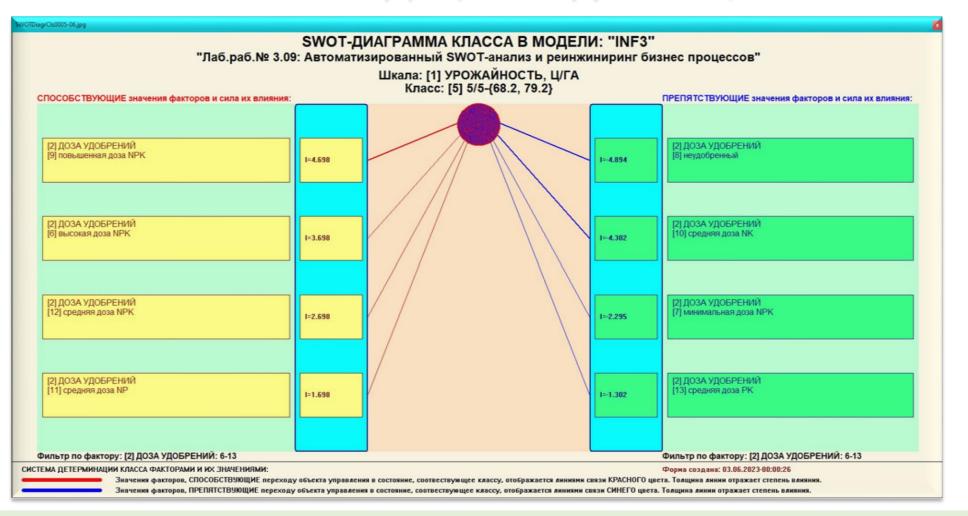


Численный пример решения задачи АПК в системе «Эйдос»: <u>Задача-7</u>. Поддержка принятия решений

7.1. Упрощенный вариант принятия решений как обратная задача прогнозирования, позитивный и негативный информационные портреты классов, SWOT-анализ


При прогнозировании по значениям факторов, действующих на объект управления, определяется в какие будущие состояния он прейдет под их влиянием. При принятии решений наоборот, по заданному целевому будущему состоянию определяется система значений факторов, обуславливающая (детерминирующая) переход объекта управления в это состояние

Численный пример решения задачи АПК в системе «Эйдос»: Задача-7. Поддержка принятия решений


7.1. Упрощенный вариант принятия решений как обратная задача прогнозирования, позитивный и негативный информационные портреты классов, SWOT-анализ

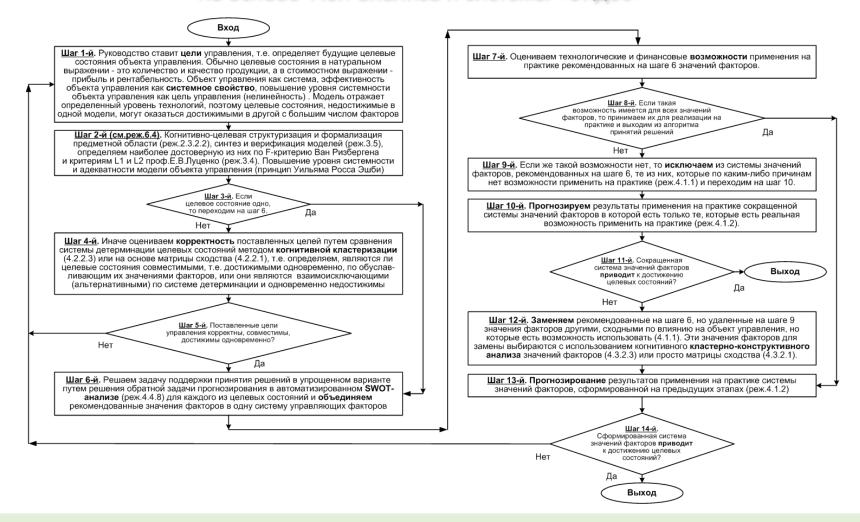
Численный пример решения задачи АПК в системе «Эйдос»: Задача-7. Поддержка принятия решений

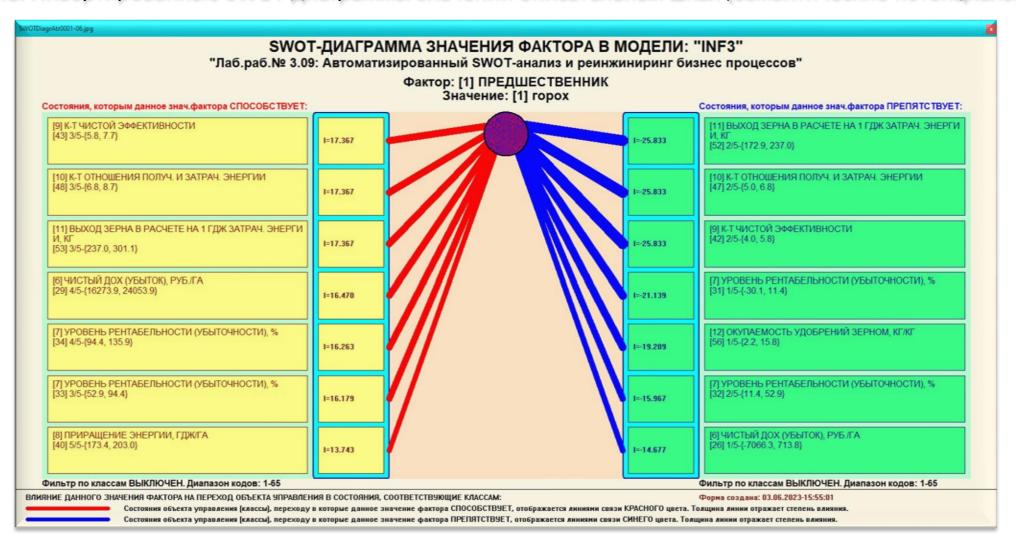
7.1. Упрощенный вариант принятия решений как обратная задача прогнозирования, позитивный и негативный информационные портреты классов, SWOT-анализ

Численный пример решения задачи АПК в системе «Эйдос»: <u>Задача-7</u>. Поддержка принятия решений

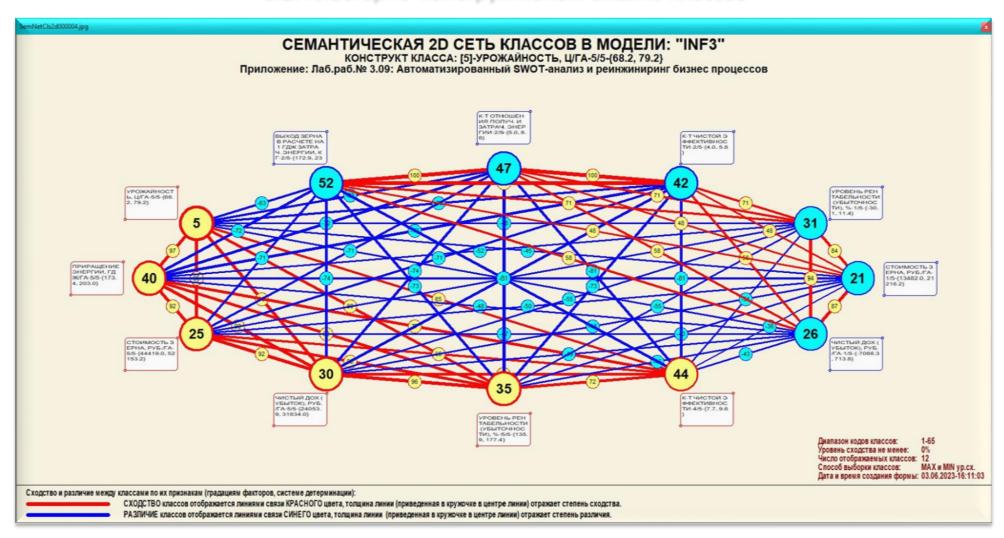
7.2. Развитый алгоритм принятия решений в адаптивных интеллектуальных системах управления на основе АСК-анализа и системы «Эйдос»

Однако SWOT-анализ (режим 4.4.8 системы «Эйдос») имеет свои ограничения: может быть задано только одно будущее целевое состояние, целевые состояния могут быть недостижимыми одновременно (альтернативными) или совместимыми по системе обуславливающих их значений факторов, некоторые рекомендуемые факторы может не быть технологической и финансовой возможности использовать и возможно надо искать им замену, примерно так же влияющую на объект моделирования.

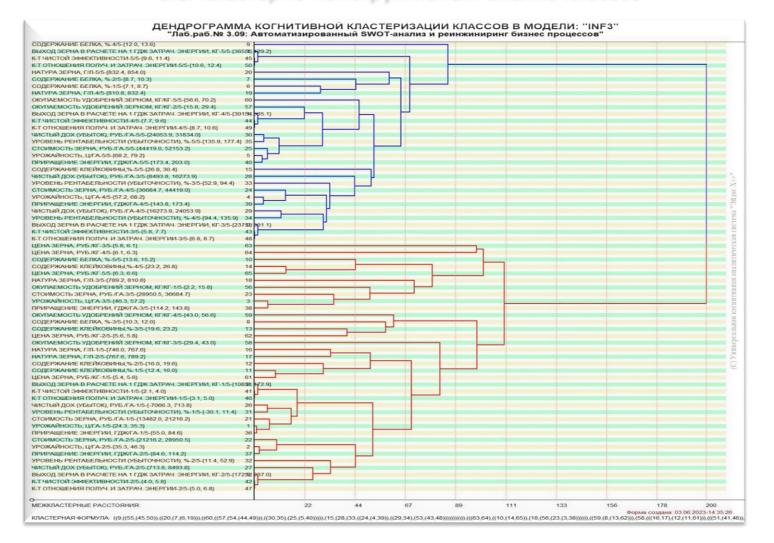

Поэтому в АСК-анализе и системе «Эйдос» реализован развитый алгоритм принятия решений (режим 6.3) в котором кроме SWOT-анализа используются также результаты решения задачи прогнозирования и результаты кластерно-конструктивного анализа классов и значений факторов, т.е. некоторые результаты решения задачи исследования предметной области. Этот алгоритм описан в многочисленных работах по АСК-анализу и системе «Эйдос».


Численный пример решения задачи АПК в системе «Эйдос»: Задача-7. Поддержка принятия решений

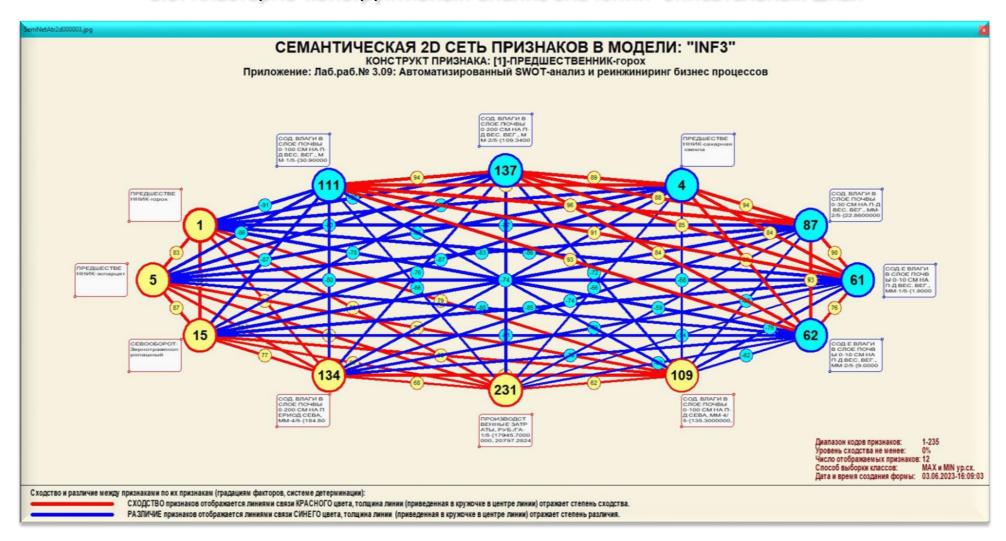
7.2. Развитый алгоритм принятия решений в адаптивных интеллектуальных системах управления на основе АСК-анализа и системы «Эйдос»



8.1. Инвертированные SWOT-диаграммы значений описательных шкал (семантические потенциалы)



8.2. Кластерно-конструктивный анализ классов

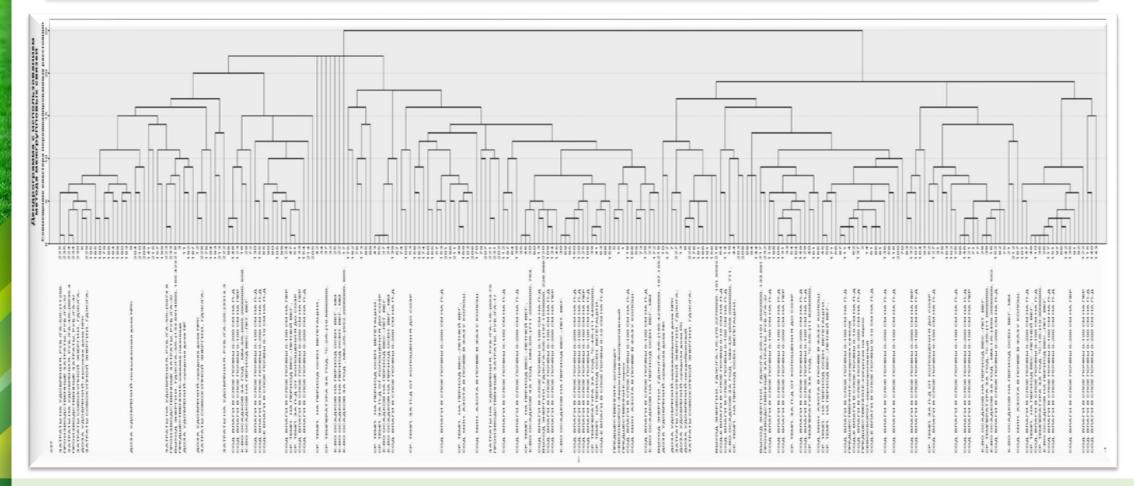


8.2. Кластерно-конструктивный анализ классов

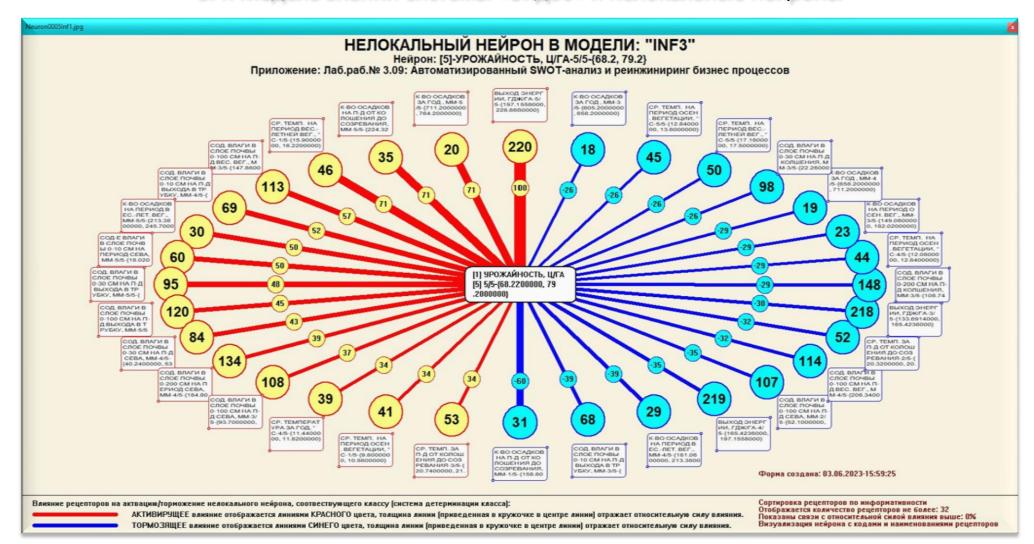
8.3. Кластерно-конструктивный анализ значений описательных шкал

Численный пример решения задачи АПК в системе «Эйдос»:

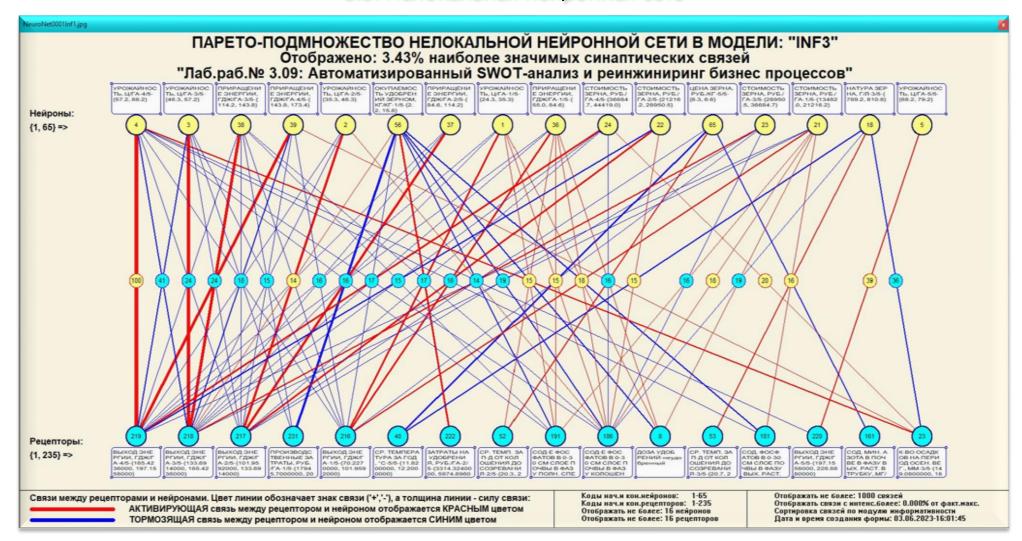
Задача-8. Исследование объекта моделирования путем исследования его модели,


8.3. Кластерно-конструктивный анализ значений описательных шкал в системе "IBM SPSS Statistics V27"

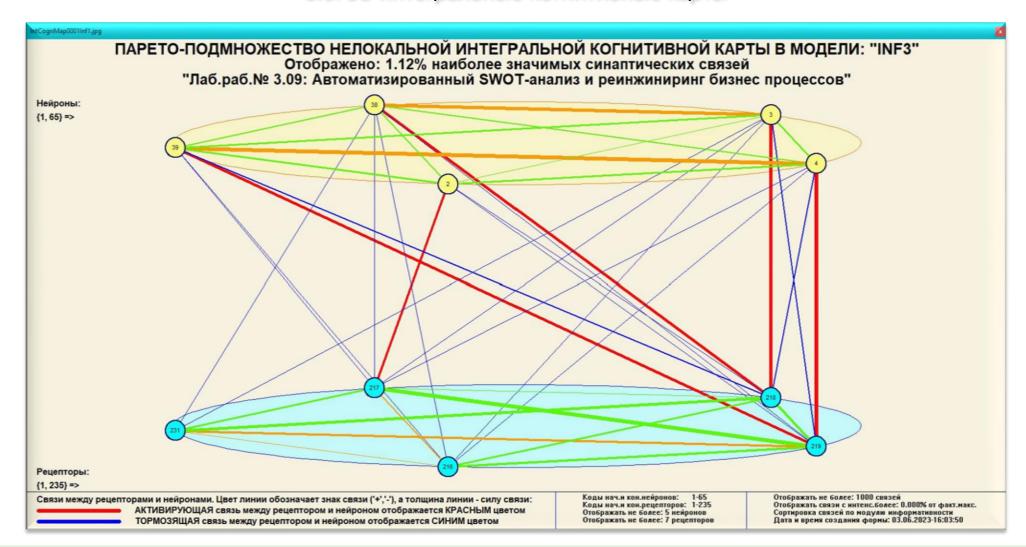
Исходные данные: системно-когнитивная модель Inf3 (хи-квадрат Карла Пирсона) (фрагмент) Файл Правка Вид Данные Преобразование Анализ Графика Упилиты Расширения Окно Справка ПРЕДШЕСТВЕННИК-кукуруза на зерно ПРЕДШЕСТВЕННИК-озимая пшеница -8,90 -2,72 10,10 ПРЕДШЕСТВЕННИК-сахарная свекла ПРЕДШЕСТВЕННИК-эспариет -3.95 ДОЗА УДОБРЕНИЙ-высокая доза NPK -7.02 ДОЗА УДОБРЕНИЙ-минимальная доза NPK -1,01 ДОЗА УДОБРЕНИЙ-неудобренный 19.52 ДОЗА УДОБРЕНИЙ-повышенная доза NPK -6,02 ДОЗА УДОБРЕНИЙ-средняя доза NK 4,98 ДОЗА УДОБРЕНИЙ-средняя доза NP -7,02 ДОЗА УДОБРЕНИЙ-средняя доза NPK -7,02 3,98 -7,02 ДОЗА УДОБРЕНИЙ-средняя доза РК СЕВООБОРОТ-зернопропашный СЕВООБОРОТ-Зернотравянопропашный К-ВО ОСАДКОВ ЗА ГОД , MM-1/5-[499.2000000, 552.2000000] 13,06 -,92 K-BO OCADKOB 3A FOD, MM-2/5-(552.2000000, 605.2000000) К-ВО ОСАДКОВ ЗА ГОД , ММ-3/5-(605.2000000, 658.2000000) К-ВО ОСАДКОВ ЗА ГОД , ММ-4/5-(658.2000000, 711.2000000) -4.96 K-BO OCADKOB 3A FOD , MM-5/5-(711.2000000, 764.2000000) К-ВО ОСАДКОВ НА ПЕРИОД ОСЕН. ВЕГ., ММ-1/5-(83.2000000, 116.1400000) К-ВО ОСАДКОВ НА ПЕРИОД ОСЕН. ВЕГ., ММ-2/5-{116.1400000, 149.0800000} К-ВО ОСАДКОВ НА ПЕРИОД ОСЕН. ВЕГ., ММ-3/5-(149.0800000, 182.0200000) К-ВО ОСАДКОВ НА ПЕРИОД ОСЕН. ВЕГ., ММ-4/5-{182 0200000, 214 9600000} К-ВО ОСАДКОВ НА ПЕРИОД ОСЕН. ВЕГ., ММ-5/5-(214.9600000, 247.9000000) К-ВО ОСАДКОВ НА ПЕРИОД ВЕС.-ЛЕТ. ВЕГ., ММ-1/5-[84.1000000, 116.42000 К-ВО ОСАДКОВ НА ПЕРИОД ВЕС.-ПЕТ. ВЕГ., ММ-2/5-{116.4200000, 148.7400 К-ВО ОСАДКОВ НА ПЕРИОД ВЕС.-ЛЕТ. ВЕГ., ММ-3/5-{148.7400000, 181.0600 К-ВО ОСАДКОВ НА ПЕРИОД ВЕС.-ЛЕТ. ВЕГ., ММ-4/5-{181.0600000, 213.3800 К-ВО ОСАДКОВ НА ПЕРИОД ВЕС.-ЛЕТ. ВЕГ., ММ-5/5-(213.3800000, 245.7000 -9 00 К-ВО ОСАДКОВ НА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ, ММ-1/5-{15 К-ВО ОСАДКОВ НА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ, ММ-2/5-{17 К-ВО ОСАДКОВ НА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ, ММ-3/5-{19 К-ВО ОСАДКОВ НА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ, ММ-4/5-[20] К-ВО ОСАДКОВ НА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ, ММ-5/5-(22) 12.08 -3,06 🗯 🛱 🀺 🐺 🛷 🗗 📱 😗 🔞 🚰 🖫 🧶 🕦 🖺 🖺 💆 🐠 🥸 🗞 0 V T 曲 公 6 V T T T V D (4) ENG .


8.3. Кластерно-конструктивный анализ значений описательных шкал в системе "IBM SPSS Statistics V27"

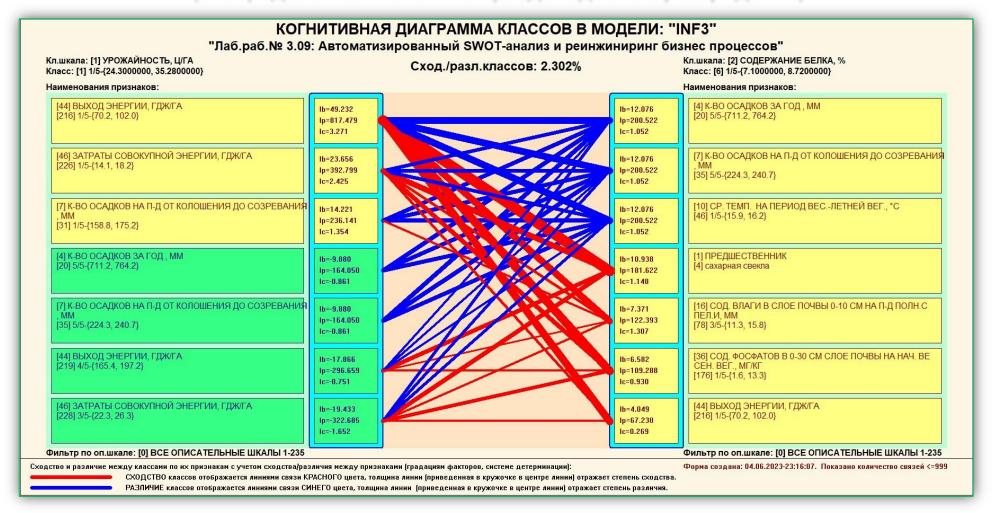
Дендрогрограмма агломеративной кластеризации значений описательных шкал в системно-когнитивной модели Inf3



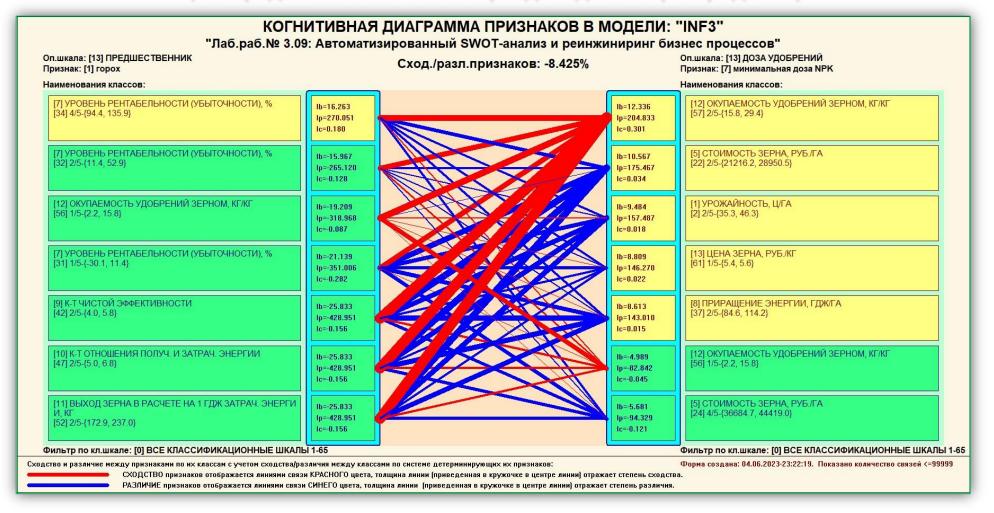
8.4. Модель знаний системы «Эйдос» и нелокальные нейроны



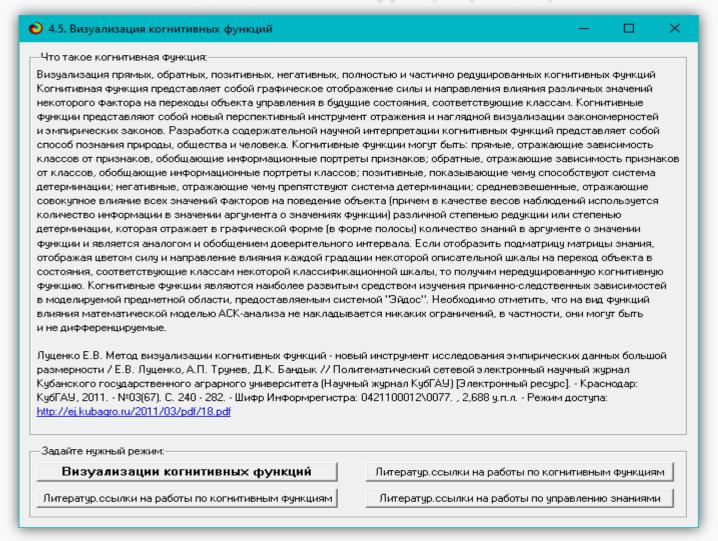
8.5. Нелокальная нейронная сеть



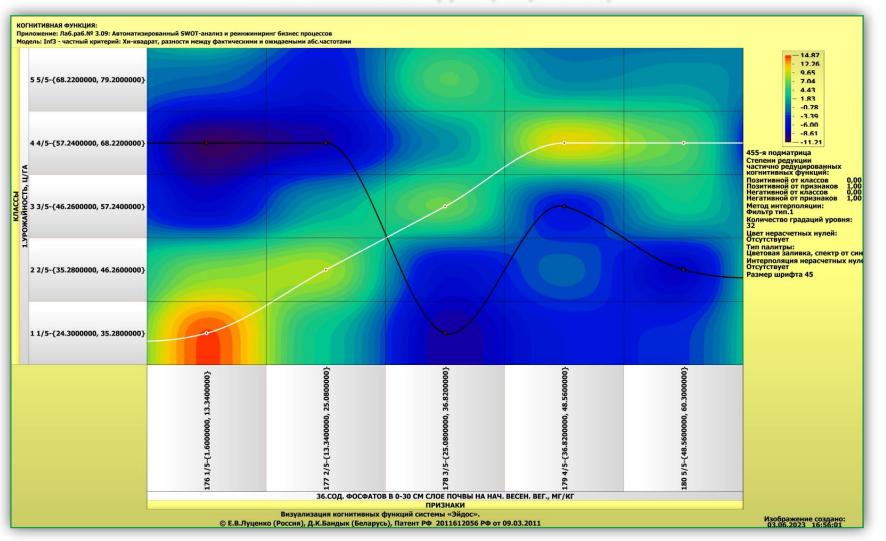
8.6. 3d-интегральные когнитивные карты



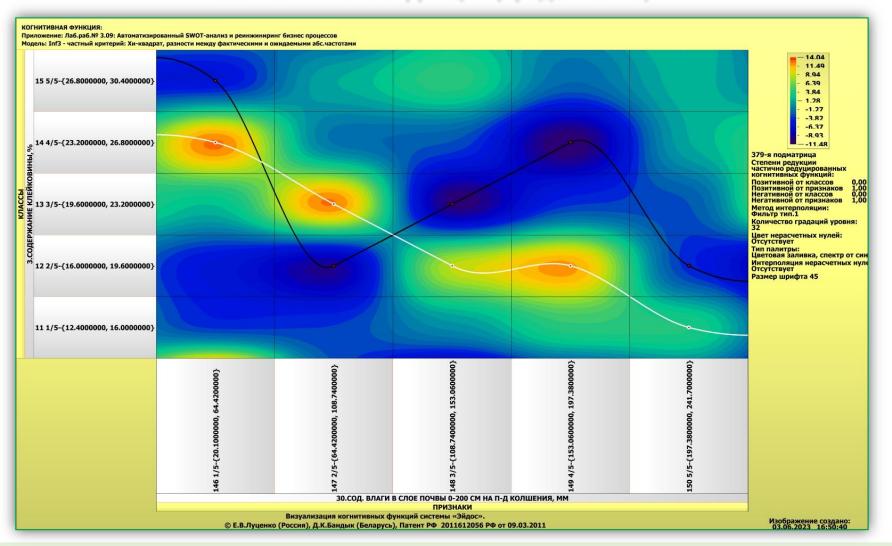
8.7. 2d-интегральные когнитивные карты содержательного сравнения классов (опосредованные нечеткие правдоподобные рассуждения)



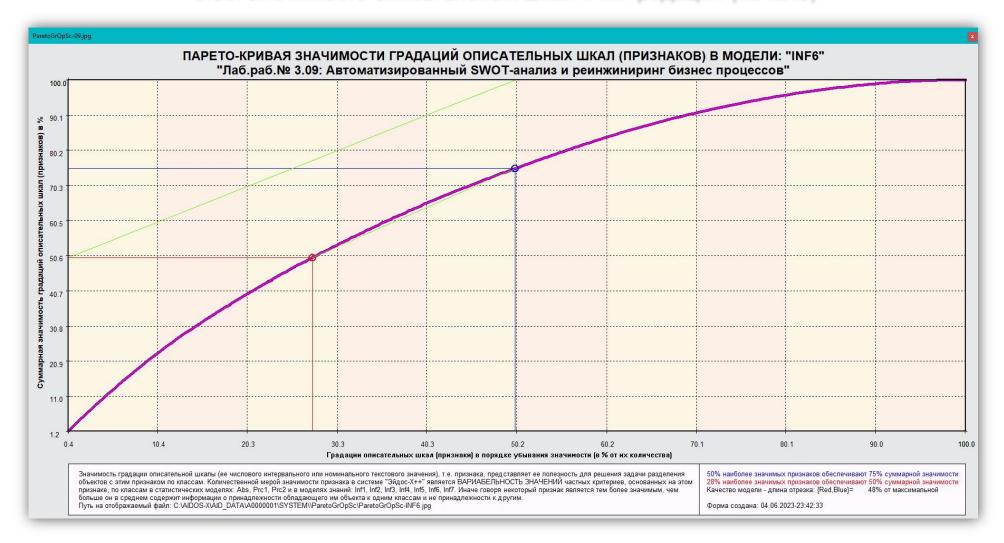
8.8. 2d-интегральные когнитивные карты содержательного сравнения **значений факторов** (опосредованные нечеткие правдоподобные рассуждения)



8.9. Когнитивные функции (начало)



8.9. Когнитивные функции (начало)



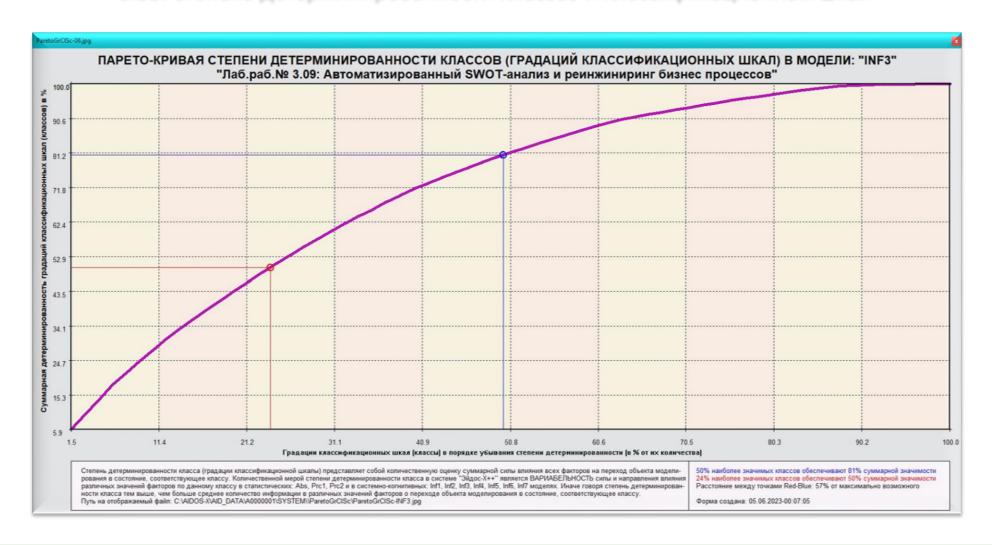
8.9. Когнитивные функции (продолжение)



8.10. Значимость описательных шкал и их градаций (начало)

8.10. Значимость описательных шкал и их градаций (продолжение)

8.10. Значимость описательных шкал (окончание)


_							
Α	В	С	D	E	F		
					Влияние		
					фактора		
	-	Код	l	Влияние	кумуля-		
Nº	N9%		Наименование фактора	фактора, %	тивно, %		
2	2,128	44	ВЫХОД ЭНЕРГИИ, ГДЖ/ГА	5,926	5,926		
	4,255	3	CEBOOGOPOT	3,173	9,098		
3	6,383 8,511	10	СР. ТЕМП. НА ПЕРИОД ВЕСЛЕТНЕЙ ВЕГ., °С ПРЕДШЕСТВЕННИК	3,087 2,962	12,185 15.147		
5	10.638	8	СР. ТЕМПЕРАТУРА ЗА ГОД, °С	2,962	17,973		
6	12,766	11		2,808	20,781		
7	14.894	6	СР. ТЕМП. ЗА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ К-ВО ОСАДКОВ НА ПЕРИОД ВЕСЛЕТ. ВЕГ., ММ	2,800	23,581		
8	17,021	47	ПРОИЗВОДСТВЕННЫЕ ЗАТРАТЫ, РУБ./ГА	2,676	26,257		
9	19,149	9	СР. ТЕМП. НА ПЕРИОД ОСЕН. ВЕГЕТАЦИИ, °C	2,675	28,932		
10	21.277	46	ЗАТРАТЫ СОВОКУПНОЙ ЭНЕРГИИ, ГДЖ/ГА	2,552	31,484		
11	23,404	23	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д ВЕС. ВЕГ., ММ	2,552	33,958		
12	25,532			2,474	36,382		
13	27,660	27 4	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА ПЕРИОД СЕВА, ММ К-ВО ОСАДКОВ ЗА ГОД , ММ	2,332	38,713		
14	29,787	22	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д СЕВА, ММ	2,308	41.021		
15		17			-		
16	31,915 34,043	30	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д СЕВА, ММ СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА П-Д КОЛШЕНИЯ, ММ	2,296	43,318 45,586		
17		21			-		
18	36,170 38,298	31	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д ПОЛНОЙ СПЕЛОСТИ, ММ СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА П-Д ПОЛН. СПЕЛ., ММ	2,254	47,840 50.090		
19	40,426	20		2,250	52,243		
20	42,553	13	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д КОЛШЕНИЯ, ММ	2,155	54,387		
21	44,681	25	СОД-Е ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА П-Д ВЕС. ВЕГ., ММ СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА ПЕРИОД КОЛОШЕНИЯ. ММ	2,143	56,519		
22	46,809	7	К-ВО ОСАДКОВ НА П-Д ОТ КОЛОШЕНИЯ ДО СОЗРЕВАНИЯ, ММ	2,133	58,564		
23	48,936	26	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д ПОЛНОЙ СПЕЛ., ММ	2,045	60,604		
24	51,064	24	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д ВЫХОДА В ТРУБКУ, ММ	2,022	62,626		
25	53,191	15	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-100 СМ НА П-Д ВЫХОДА В ГРУВКУ, ММ	2,022	64,641		
26	55.319	12	СОД-Е ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА ПЕРИОД СЕВА, ММ	1.998	66,639		
27	57,447	16	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА П-Д ПОЛН. СПЕЛ.И, ММ	1,979	68,618		
28	59.574	18	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ О-30 СМ НА П-Д ВЕС. ВЕГ., ММ	1,951	70,570		
29	61,702	2	доза удобрений	1,888	72,458		
30	63,830	14	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-10 СМ НА П-Д ВЫХОДА В ТРУБКУ, ММ	1,885	74,343		
31	65.957	32	СОД. МИН.О АЗОТА В ПОЧВЕ НА НАЧАЛО ВЕС. ВЕГ.И, МГ/КГ	1,866	76,209		
32	68,085	19	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-30 СМ НА П-Д ВЫХОДА В ТРУБКУ, ММ	1,845	78,054		
33	70,213	45	ЗАТРАТЫ НА УДОБРЕНИЯ, РУБ. /ГА	1,844	79,898		
34	72,340	28	СОД. ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА П-Д ВЕС. ВЕГ., ММ	1,752	81,650		
35	74,468	5	к-во осадков на период осен. вег., мм	1,713	83,363		
36	76,596	36	СОД. ФОСФАТОВ В 0-30 СМ СЛОЕ ПОЧВЫ НА НАЧ. ВЕСЕН. ВЕГ., МГ/КГ	1,620	84,984		
37	78,723	37	СОД. ФОСФАТОВ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ ВЫХ. РАСТ. В ТРУБКУ, МГ/КГ	1,559	86,542		
38	80.851	38	СОД-Е ФОСФАТОВ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ КОЛОШЕНИЯ, МГ/КГ	1,518	88,060		
39	82,979	39	СОД-Е ФОСФАТОВ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ ПОЛН. СПЕЛ., МГ/КГ	1,488	89,548		
40	85,106	40	СОД-Е КАЛИЯ В 0-30 СМ СЛОЕ ПОЧВЫ НА НАЧ.О ВЕС. ВЕГ., МГ/КГ	1,394	90,942		
41	87,234	33	СОД. МИН. АЗОТА В ПОЧВЕ В ФАЗУ ВЫХ. РАСТ. В ТРУБКУ, МГ/КГ	1,367	92,309		
42	89.362	41	СОД-Е КАЛИЯ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ ВЫХ, РАСТ. В ТРУБКУ, МГ/КГ	1,355	93,665		
43	91,489	35	СОД. МИН. АЗОТА В ПОЧВЕ В ФАЗУ ПОЛН. СПЕЛ., МГ/КГ	1,352	95,017		
44	93,617	29	СОД.Е ВЛАГИ В СЛОЕ ПОЧВЫ 0-200 СМ НА П-Д ВЫХОДА В ТРУБКУ, ММ	1,301	96,318		
45	95,745	34	СОД. МИН. АЗОТА В ПОЧВЕ В ФАЗУ КОЛОШ., МГ/КГ	1,254	97,572		
	97,872	43	СОД-Е КАЛИЯ В 0-30 СМ СЛОЕ ПОЧВЫ В ФАЗУ ПОЛН. СПЕЛ., МГ/КГ	1,246	98,817		
				· · · ·			

Сила влияния фактора на поведение объекта моделирования — это средняя сила влияния значений (градаций) этого фактора. А сила влияния некоторого значения фактора на поведение объекта моделирования — это вариабельность количества информации в этом значении фактора по всем классам (классы соответствуют будущим состояниям объекта моделирования).

Из приведенной таблицы, которая получается в режиме 3.7.4 системы «Эйдос», мы видим, что наиболее сильно на переход объекта моделирования на состояния, соответствующие классам, влияет выход энергии с поля, немного меньше влияет севооборот и средняя температура в период весенне-летней вегетации, а слабее всего (примерно в 5 раз слабее), влияет содержание калия в поверхностном слое почвы в фазу полной спелости.

8.11. Степень детерминированности классов и классификационных шкал

Численный пример решения задачи АПК в системе «Эйдос»:

Задача-8. Исследование объекта моделирования путем исследования его модели,

8.11. Степень детерминированности классов и классификационных шкал

Степень детерминированности классов

					Детермини-
					рованность
				Детермини-	класса
		Код		рованность	кумуля-
NΩ	Nº%	класса	Наименование класса	класса, %	тивно, %
1	1,538	56	ОКУПАЕМОСТЬ УДОБРЕНИЙ ЗЕРНОМ, КГ/КГ-1/5-{2.2, 15.8}	5,896	5,896
2	3,077	42	К-Т ЧИСТОЙ ЭФФЕКТИВНОСТИ-2/5-{4.0, 5.8}	4,023	9,919
3	4,615	47	К-Т ОТНОШЕНИЯ ПОЛУЧ. И ЗАТРАЧ. ЭНЕРГИИ-2/5-{5.0, 6.8}	4,023	13,941
4	6,154	52	ВЫХОД ЗЕРНА В РАСЧЕТЕ НА 1 ГДЖ ЗАТРАЧ. ЭНЕРГИИ, КГ-2/5-{172.9, 237.0}	4,023	17,964
5	7,692	8	СОДЕРЖАНИЕ БЕЛКА, %-3/5-{10.3, 12.0}	3,295	21,259
6	9,231	62	ЦЕНА ЗЕРНА, РУБ./КГ-2/5-{5.6, 5.8}	3,295	24,553
7	10,769	65	ЦЕНА ЗЕРНА, РУБ./KГ-5/5-{6.3, 6.6}	3,069	27,623
8	12,308	32	УРОВЕНЬ РЕНТАБЕЛЬНОСТИ (УБЫТОЧНОСТИ), %-2/5-{11.4, 52.9}	3,052	30,675
9	13,846	18	НАТУРА ЗЕРНА, Г/Л-3/5-{789.2, 810.8}	2,930	33,605
10	15,385	27	ЧИСТЫЙ ДОХ (УБЫТОК), РУБ./ГА-2/5-{713.8, 8493.8}	2,688	36,293
11	16,923	43	К-Т ЧИСТОЙ ЭФФЕКТИВНОСТИ-3/5-{5.8, 7.7}	2,532	38,824
12	18,462	48	К-Т ОТНОШЕНИЯ ПОЛУЧ. И ЗАТРАЧ. ЭНЕРГИИ-3/5-{6.8, 8.7}	2,532	41,356
13	20,000	53	ВЫХОД ЗЕРНА В РАСЧЕТЕ НА 1 ГДЖ ЗАТРАЧ. ЭНЕРГИИ, КГ-3/5-{237.0, 301.1}	2,532	43,888
14	21,538	4	УРОЖАЙНОСТЬ, Ц/ГА-4/5-{57.2, 68.2}	2,480	46,367
15	23,077	14	СОДЕРЖАНИЕ КЛЕЙКОВИНЫ,%-4/5-{23.2, 26.8}	2,341	48,708
16	24,615	38	ПРИРАЩЕНИЕ ЭНЕРГИИ, ГДЖ/ГА-3/5-{114.2, 143.8}	2,341	51,049
17	26,154	23	СТОИМОСТЬ ЗЕРНА, РУБ./ГА-3/5-{28950.5, 36684.7}	2,306	53,355
18	27,692	13	СОДЕРЖАНИЕ КЛЕЙКОВИНЫ,%-3/5-{19.6, 23.2}	2,220	55,575
19	29,231	39	ПРИРАЩЕНИЕ ЭНЕРГИИ, ГДЖ/ГА-4/5-{143.8, 173.4}	2,168	57,742
20	30,769	3	УРОЖАЙНОСТЬ, Ц/ГА-3/5-{46.3, 57.2}	2,133	59,875
21	32,308	28	ЧИСТЫЙ ДОХ (УБЫТОК), РУБ./ГА-3/5-{8493.8, 16273.9}	2,063	61,939
22	33,846	12	СОДЕРЖАНИЕ КЛЕЙКОВИНЫ,%-2/5-{16.0, 19.6}	1,977	63,915
23	35,385	17	НАТУРА ЗЕРНА, Г/Л-2/5-{767.6, 789.2}	1,959	65,875
24	36,923	24	СТОИМОСТЬ ЗЕРНА, РУБ./ГА-4/5-{36684.7, 44419.0}	1,873	67,748
25	38,462	22	СТОИМОСТЬ ЗЕРНА, РУБ./ГА-2/5-{21216.2, 28950.5}	1,855	69,603
26	40,000	31	УРОВЕНЬ РЕНТАБЕЛЬНОСТИ (УБЫТОЧНОСТИ), %-1/5-{-30.1, 11.4}	1,821	71,424
27	41,538	7	СОДЕРЖАНИЕ БЕЛКА, %-2/5-{8.7, 10.3}	1,543	72,967
28	43,077	2	УРОЖАЙНОСТЬ, Ц/ГА-2/5-{35.3, 46.3}	1,457	74,423
29	44,615	33	УРОВЕНЬ РЕНТАБЕЛЬНОСТИ (УБЫТОЧНОСТИ), %-3/5-{52.9, 94.4}	1,439	75,863
30	46,154	37	ПРИРАЩЕНИЕ ЭНЕРГИИ, ГДЖ/ГА-2/5-{84.6, 114.2}	1,439	77,302
31	47,692	9	СОДЕРЖАНИЕ БЕЛКА, %-4/5-{12.0, 13.6}	1,422	78,724
32	49,231	61	ЦЕНА ЗЕРНА, РУБ./KГ-1/5-{5.4, 5.6}	1,405	80,128
33	50.769	20	НАТУРА ЗЕРНА, Г/Л-5/5-{832.4. 854.0}	1,214	81,342

					Детермин
					рованнос
				Детермини-	класса
		Код		рованность	кумуля-
Nº	Nº%	класса	Наименование класса	класса, %	тивно, %
34	52,308	29	ЧИСТЫЙ ДОХ (УБЫТОК), РУБ./ГА-4/5-{16273.9, 24053.9}	1,214	82,556
35	53,846	19	НАТУРА ЗЕРНА, Г/Л-4/5-{810.8, 832.4}	1,196	83,752
36	55,385	21	СТОИМОСТЬ ЗЕРНА, РУБ./ГА-1/5-{13482.0, 21216.2}	1,162	84,914
37	56,923	26	ЧИСТЫЙ ДОХ (УБЫТОК), РУБ./ГА-1/5-{-7066.3, 713.8}	1,162	86,076
38	58,462	10	СОДЕРЖАНИЕ БЕЛКА, %-5/5-{13.6, 15.2}	1,092	87,168
39	60,000	36	ПРИРАЩЕНИЕ ЭНЕРГИИ, ГДЖ/ГА-1/5-{55.0, 84.6}	1,092	88,261
40	61,538	34	УРОВЕНЬ РЕНТАБЕЛЬНОСТИ (УБЫТОЧНОСТИ), %-4/5-{94.4, 135.9}	1,023	89,284
41	63,077	1	УРОЖАЙНОСТЬ, Ц/ГА-1/5-{24.3, 35.3}	0,971	90,255
42	64,615	5	УРОЖАЙНОСТЬ, Ц/ГА-5/5-{68.2, 79.2}	0,728	90,983
43	66,154	40	ПРИРАЩЕНИЕ ЭНЕРГИИ, ГДЖ/ГА-5/5-{173.4, 203.0}	0,711	91,694
44	67,692	30	ЧИСТЫЙ ДОХ (УБЫТОК), РУБ./ГА-5/5-{24053.9, 31834.0}	0,642	92,336
45	69,231	41	К-Т ЧИСТОЙ ЭФФЕКТИВНОСТИ-1/5-{2.1, 4.0}	0,642	92,977
46	70,769	46	К-Т ОТНОШЕНИЯ ПОЛУЧ. И ЗАТРАЧ. ЭНЕРГИИ-1/5-{3.1, 5.0}	0,642	93,619
47	72,308	51	ВЫХОД ЗЕРНА В РАСЧЕТЕ НА 1 ГДЖ ЗАТРАЧ. ЭНЕРГИИ, КГ-1/5-{108.8, 172.9}	0,642	94,260
48	73,846	15	СОДЕРЖАНИЕ КЛЕЙКОВИНЫ,%-5/5-{26.8, 30.4}	0,624	94,885
49	75,385	11	СОДЕРЖАНИЕ КЛЕЙКОВИНЫ,%-1/5-{12.4, 16.0}	0,607	95,492
50	76,923	25	СТОИМОСТЬ ЗЕРНА, РУБ./ГА-5/5-{44419.0, 52153.2}	0,572	96,064
51	78,462	44	К-Т ЧИСТОЙ ЭФФЕКТИВНОСТИ-4/5-{7.7, 9.6}	0,538	96,601
52	80,000	49	К-Т ОТНОШЕНИЯ ПОЛУЧ. И ЗАТРАЧ. ЭНЕРГИИ-4/5-{8.7, 10.6}	0,538	97,139
53	81,538	54	ВЫХОД ЗЕРНА В РАСЧЕТЕ НА 1 ГДЖ ЗАТРАЧ. ЭНЕРГИИ, КГ-4/5-{301.1, 365.1}	0,538	97,676
54	83,077	57	ОКУПАЕМОСТЬ УДОБРЕНИЙ ЗЕРНОМ, КГ/КГ-2/5-{15.8, 29.4}	0,503	98,179
55	84,615	16	НАТУРА ЗЕРНА, Г/Л-1/5-{746.0, 767.6}	0,468	98,647
56	86,154	35	УРОВЕНЬ РЕНТАБЕЛЬНОСТИ (УБЫТОЧНОСТИ), %-5/5-{135.9, 177.4}	0,434	99,081
57	87,692	6	СОДЕРЖАНИЕ БЕЛКА, %-1/5-{7.1, 8.7}	0,416	99,497
58	89,231	58	ОКУПАЕМОСТЬ УДОБРЕНИЙ ЗЕРНОМ, КГ/КГ-3/5-{29.4, 43.0}	0,173	99,671
59	90,769	60	ОКУПАЕМОСТЬ УДОБРЕНИЙ ЗЕРНОМ, КГ/КГ-5/5-{56.6, 70.2}	0,121	99,792
60	92,308	59	ОКУПАЕМОСТЬ УДОБРЕНИЙ ЗЕРНОМ, КГ/КГ-4/5-{43.0, 56.6}	0,104	99,896
61	93,846	45	К-Т ЧИСТОЙ ЭФФЕКТИВНОСТИ-5/5-{9.6, 11.4}	0,035	99,931
62	95,385	50	К-Т ОТНОШЕНИЯ ПОЛУЧ. И ЗАТРАЧ. ЭНЕРГИИ-5/5-{10.6, 12.4}	0,035	99,965
63	96,923	55	ВЫХОД ЗЕРНА В РАСЧЕТЕ НА 1 ГДЖ ЗАТРАЧ. ЭНЕРГИИ, КГ-5/5-{365.1, 429.2}	0,035	100,000
64	98,462	63	ЦЕНА ЗЕРНА, РУБ./KГ-3/5-{5.8, 6.1}	0,000	100,000
65	100,000	64	ЦЕНА ЗЕРНА, РУБ./КГ-4/5-{6.1, 6.3}	0,000	100,000

Степень детерм-ти классификационных шкал

ı					степень
				Степень	детермини-
				детермини-	рованности
		Код		рованности,	кумуля-
Nº	Nº%	класса	Наименование класса	%	тивно, %
1	7,692	1	УРОЖАЙНОСТЬ, Ц/ГА	7,768	7,768
2	15,385	2	СОДЕРЖАНИЕ БЕЛКА, %	7,768	15,537
3	23,077	3	СОДЕРЖАНИЕ КЛЕЙКОВИНЫ,%	7,768	23,305
4	30,769	4	НАТУРА ЗЕРНА, Г/Л	7,768	31,073
5	38,462	5	СТОИМОСТЬ ЗЕРНА, РУБ./ГА	7,768	38,842
6	46,154	6	ЧИСТЫЙ ДОХ (УБЫТОК), РУБ./ГА	7,768	46,610
7	53,846	7	УРОВЕНЬ РЕНТАБЕЛЬНОСТИ (УБЫТОЧНОСТИ), %	7,768	54,378
8	61,538	9	К-Т ЧИСТОЙ ЭФФЕКТИВНОСТИ	7,768	62,147
9	69,231	10	К-Т ОТНОШЕНИЯ ПОЛУЧ. И ЗАТРАЧ. ЭНЕРГИИ	7,768	69,915
10	76,923	11	ВЫХОД ЗЕРНА В РАСЧЕТЕ НА 1 ГДЖ ЗАТРАЧ. ЭНЕРГИИ, КГ	7,768	77,683
11	84,615	13	ЦЕНА ЗЕРНА, РУБ./КГ	7,768	85,452
12	92,308	8	ПРИРАЩЕНИЕ ЭНЕРГИИ, ГДЖ/ГА	7,751	93,203
13	100,000	12	ОКУПАЕМОСТЬ УДОБРЕНИЙ ЗЕРНОМ, КГ/КГ	6,797	100,000

Важнейший результат и его сущность

Важнейший результат: разработана и внедрена в учебный процесс и научные исследования КубГАУ Персональная интеллектуальная онлайн среда "ЭЙДОС-Х Professional" (Система "Эйдос-Хрго") (автор и разработчик: д.э.н., к.т.н., профессор Е.В.Луценко).

Сущность результата: Система "Эйдос-Хрго":

- <u>предназначена</u> для обучения и научных исследований в различных предметных областях и научных направлениях с применением автоматизированного системно-когнитивного анализа (АСК-анализ) и его программного инструментария интеллектуальной системы «Эйдос»;
- <u>обеспечивает</u> преобразование больших данных (**Big Data**), в большую информацию (**Big Information**), а ее в большие знания (**Big Knowledge**) с использованием ADS (Advantage Database Server) и решение на основе этих знаний задач: обобщения, абстрагирования, идентификации (классификации, распознавания, диагностики, прогнозирования), поддержки принятия решений и исследования моделируемой предметной области путем исследования ее модели в различных предметных областях и научных направлениях;
- <u>позволяет</u> пользователям и разработчикам интеллектуальных облачных Эйдос-приложений **во всем мире** (http://lc.kubagro.ru/map5.php) обмениваться опытом решения различных задач учебного и научного характера с применением технологий искусственного интеллекта на платформе "Эйдос-Хрго".

Новизна и значимость результата и прогноз применения

Новизна результата: впервые в российском аграрном вузе создана и внедрена в учебный процесс при преподавании дисциплин, связанных с искусственным интеллектом, и в процесс междисциплинарных научных исследований облачная интеллектуальная платформа персонального уровня.

Значимость результата: Автоматизированный системно-когнитивный анализ и его программный инструментарий система «Эйдос» является высокоэффективным, широко успешно апробированным в ряде предметных областей и научных направлений отечественным лицензионным программным продуктом, что существенно в плане безопасности и импортозамещения в сфере искусственного интеллекта.

Прогноз применения: в настоящее время на платформе "Эйдос-Хрго" создано 30 интеллектуальных локальных учебных приложений, входящих в инсталляцию, и 390 интеллектуальных облачных Эйдос-приложений. В процессе подготовки к размещению находится еще около 100 облачных Эйдос-приложений. Может эффективно применятся в АПК для решения широкого круга задач в области когнитивной ветеринарии, когнитивной агрономии, когнитивной экономики и в других областях. Имеет 100% готовность к внедрению. Подробнее перспективы применения АСК-анализа и системы «Эйдос» в АПК приведены в работах [1-22]. Итак, методология и теория АСК-анализа и его программный инструментарий разработаны, доведены до инновационного уровня (100% готовность к внедрению), широко и успешно апробированы во многих предметных областях, в т.ч. связанных с АПК.

Препятствия на пути внедрения полученных результатов

Однако их реальному широкому внедрению технологий АСК-анализа и интеллектуальной системы «Эйдос» для решения задач АПК **препятствует** фактически полное отсутствие соответствующей инфраструктуры их продвижения и внедрения (многочисленные научные статьи и монографии по АСК-анализу и системе «Эйдос», сайт и блоги в этом смысле малоэффективны, т.к. потенциальные заказчики их не читают). Поэтому **предлагается** создать такую инфраструктуру, т.к. технологии искусственного интеллекта – это сейчас безусловно мэйнстрим.

Предложение по созданию Центра системно-когнитивных исследований «Эйдос» КубГАУ

В контексте Программы развития ФГБОУ ВО «Кубанский ГАУ» на 2021–2030 гг. и целью программы «Приоритет 2030» и с учетом Указа Президента РФ от 10.10.2019 N 490 "О развитии искусственного интеллекта в Российской Федерации" (вместе с "Национальной стратегией развития искусственного интеллекта на период до 2030 года"), осуществление MVP-проекта «Внедрение технологий АСК-анализа и интеллектуальной системы «Эйдос» для решения задач АПК» начинается следующим образом.

Предлагаю:

создать "Центр системно-когнитивных исследований Эйдос" ФГБОУ ВО «Кубанский ГАУ» (ЦСКИ «Эйдос» КубГАУ), со статусом бюджетного структурного подразделения университета в аппарате проректора по научной работе с основной задачей: разработка и внедрение в КубГАУ и АПК Краснодарского края технологий Автоматизированного системно-когнитивного анализа (АСК-анализ) и искусственного интеллекта с целью автоматизации получения новых научных знаний и автоматизации их применения в технологической, экономической, социальной и других областях.

Основные функции ЦСКИ «Эйдос» КубГАУ и обеспечивающие их *структурные подразделения* Центра:

- 1. Преобразование больших эмпирических, экспериментальных и других исходных данных, имеющихся в КубГАУ (*Big Data*), в стандарты АСК-анализа и его программного инструментария – интеллектуальной системы «Эйдос» и накопление их в больших базах данных (отдел исходных баз данных).
- 2. Создание статистических и системно-когнитивных моделей, отражающих силу и направление влияния различных факторов на объект моделирования и решение на основе этих моделей задач идентификации, прогнозирования, принятия решений и исследования моделируемой предметной области (преобразование: большие данные – большая информация – большие знания, big data – big information – big knowledge) (отдел АСК-анализа).
 - 3. Изучение и сравнение существующих СИИ, разработка и внедрение новых перспективных систем искусственного интеллекта (отдел СИИ).

Для сотрудников и подразделений КубГАУ ЦСКИ «Эйдос» будет оказывать свои услуги бесплатно, а для сторонних заказчиков – на основе их договоров с КубГАУ с перечислением (после отчисления налогов и обязательных платежей в бюджет) 50% оплаты по договорам университету. АСК-анализ и система «Эйдос» является высокоэффективным и широко успешно апробированным в ряде предметных областей отечественным лицензионным программным продуктом, что существенно в плане безопасности и импортозамещения в данной сфере (http://lc.kubagro.ru/). Система «Эйдос» широко применяется во всем мире (http://lc.kubagro.ru/map5.php).

Выводы

На основании изложенного у нас есть основания сделать следующие обоснованные выводы:

- 1. Применение технологий искусственного интеллекта для решения задач АПК позволяет преодолеть естественные психофизиологические ограничения человека по обработке информации и принятию решений в АПК.
- 2. АСК-анализ и система «Эйдос» являются существенным заделом в этой области и на 100% готовы к внедрению в деятельность АПК.
- 3. Однако для реального применения этих научных разработок в области АПК необходимо создание соответствующей инфраструктуры их продвижения и применения, например ЦСКИ «Эйдос» КубГАУ.
- 4. В качестве перспективы хотелось бы отметить, что в настоящее время автором ведется разработка новой версии системы «Эйдос» на языке С++ и предпринимаются усилия по созданию Центра системно-когнитивных исследований Эйдос" КубГАУ (ЦСКИ «Эйдос»),

Список литературы по АСК-анализу и системе «Эйдос»

- 1. Сайт проф. E. B. Луценко: http://lc.kubagro.ru.
- 2. Блог проф.E.B.Луценко: https://www.researchgate.net/profile/Eugene-Lutsenko
- 3. Монографии по ACK-анализу: http://lc.kubagro.ru/aidos/_Aidos-X.htm#_Toc128746370
- 4. Некоторые учебники и учебные пособия проф. E.B. Луценко: http://lc.kubagro.ru/aidos/Aidos-X.htm# Toc128746372.
- 5. Свидетельства Роспатента на систему «Эйдос» и ее подсистемы: http://lc.kubagro.ru/aidos/Aidos-X.htm#_Toc128746371.
- 6. Тематические подборки публикаций по применению АСК-анализа и системы «Эйдос» в различных предметных областях: http://lc.kubagro.ru/aidos/ Aidos-X.htm
- 7. Работы по информационным мерам уровня системности (коэффициентам эмерджентности) и системному обобщению математики: http://lc.kubagro.ru/aidos/Work on emergence.htm .
- 8. Работы по ACK-анализу изображений: http://lc.kubagro.ru/aidos/Works on ASK-analysis of images.htm
- 9. Работы по ACK-анализу текстов: http://lc.kubagro.ru/aidos/Works on ASK-analysis of texts.htm
- 10. Работы по когнитивным функциям: http://lc.kubagro.ru/aidos/Works on cognitive functions.htm
- 11. Работы по выявлению, представлению и использованию знаний, логике и методологии научного познания:

http://lc.kubagro.ru/aidos/Work on identification presentation and use of knowledge.htm

- 12. Работы по экологии, климатологии и изучению влияния космической среды на различные глобальные процессы на Земле: http://lc.kubagro.ru/aidos/Work on the study of the influence of the space environment on various processes on Earth.htm
- 13. Работы по современным информационно-коммуникационным технологиям в научно-исследовательской деятельности и образовании:

http://lc.kubagro.ru/aidos/Information and communication technologies in research activities and education.htm

- 14. Работы по виртуальной реальности: http://lc.kubagro.ru/aidos/Virtual reality publications.htm
- 15. Работы по когнитивной ветеринарии: http://lc.kubagro.ru/aidos/Publications on cognitive veterinary medicine.htm
- 16. Работы по когнитивной агрономии и когнитивной ампелографии: http://lc.kubagro.ru/aidos/Works on cognitive agronomy.htm
- 17. Работы по тематике, связанной с АПК: http://lc.kubagro.ru/aidos/Work with agricultural.htm
- 18. Работы по наукометрии: http://lc.kubagro.ru/aidos/Works on scientometrics.htm
- 19. Работы о высших формах сознания, перспективах человека, технологии и общества:

http://lc.kubagro.ru/aidos/Works on higher forms of consciousness.htm

- 20. Работы по разработке и применению профессиограмм и тестов (психологических, проформентационных, медицинских и ветеринарных): http://lc.kubagro.ru/aidos/Work on the development and application tests.htm
- 21. Работы по сценарному автоматизированному системно-когнитивному анализу (сценарный АСК-анализ): http://lc.kubagro.ru/aidos/Works on Scenario ASC-analysis.htm
- 22. MVP-проект «Внедрение технологий АСК-анализа и системы «Эйдос» для решения задач АПК»: http://lc.kubagro.ru/aidos/MVP-projects.htm
- 23. Кратко об ACK-анализе и системе «Эйдос»: http://lc.kubagro.ru/aidos/Presentation_Aidos-online.pdf
- 24.Ссылки на видео-занятия и проф.E.B.Луценко в Пермском национальном университете: https://bigbluebutton.pstu.ru/b/w3y-2ir-ukd-bqn (2021), https://bigbluebutton.pstu.ru/b/3kc-n8a-gon-tjz (2022), в Кубанском государственном университете и Кубанском государственном аграрном университете: https://disk.yandex.ru/d/knISAD5qzV83Ng?w=1

Луценко Евгений Вениаминович

Профессор, доктор экономических наук, кандидат технических наук, профессор кафедры компьютерных технологий и систем

+7 (905) 408-54-24

prof.lutsenko@gmail.com

http://lc.kubagro.ru/

Эта презентация онлайн: http://lc.kubagro.ru/Presentation_LutsenkoEV.pdf

